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a b s t r a c t

This paper provides a solution for a crack embedded in the thermal dissimilar elliptic
inclusion. The whole medium is composed of a cracked inclusion and an infinite matrix.
The inclusion and the matrix have different elastic properties and temperature
distribution. The embedded crack is replaced by a very slender elliptic contour. The
complex variable and the conformal mapping are used in the paper. From the evaluated
stress concentration factor at the crown point, we can get the stress intensity factor at
the crack tip from an existing equation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many researchers studied the inclusion problem or inhomogeneity in plane elasticity [1–5]. A few of the studies were
devoted to a crack embedded in the inclusion.

A solution for crack in a confocal elliptic inhomogeneity embedded in an infinite medium was proposed [1]. In the
solution, the conformal mapping method is used. Therefore, the complex potentials defined on the ring region of mapping
plane can be expanded into a Laurent series. From the traction free condition along the crack, the continuity conditions along
interface and the remote loading condition, the boundary value problem is solved accordingly. After using the complex vari-
able method and the conformal mapping, the uniform stress state inside an inclusion of arbitrary shape in a three-phase
composite was studied [2].

A solution in plane elasticity for multiple elliptic layers with different elastic properties was suggested [3]. The complex
variable method and the conformal mapping are used. The continuation conditions for traction and displacement along the
interface are satisfied in a weaker form. Many numerical results are presented. A solution for thermal elliptic inclusion in
plane elasticity was studied [4]. There is a difference for the temperatures in the inclusion and the matrix. Two types of tem-
perature distributions in the inclusion, namely the constant distribution and the linear distribution, are assumed. The prob-
lem is solved in a closed form. A comprehensive review for recent works on inclusions was provided [5]. The review
concludes with an outlook on future research directions.

This paper provides a solution for a crack embedded in thermal dissimilar elliptic inclusion. The whole medium is com-
posed of a cracked inclusion and an infinite matrix. The inclusion and the matrix have different elastic properties and tem-
perature distribution. The embedded crack is replaced by a very slender elliptic contour. The complex variable and the
conformal mapping are used in the paper. The complex potentials on the ring region of the mapping plane are expanded into
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a Laurent series. The boundary condition and the continuity conditions for the traction and the displacement are proposed,
and they are satisfied in a weaker form. The concentrated stress at the crown point of notch can be evaluated accordingly.
The stress intensity factor at the crack tip can be evaluated from the stress concentration factor by using an existing
equation. The stress intensity factor depends on (a) the geometry of the medium, (b) the elastic constants on different
portions of the medium and (c) the temperature distribution on different portions of the medium. Several numerical results
are presented.

2. Analysis

A complex potential in the thermal field is introduced as follows [4,6]

hðzÞ ¼ tðx; yÞ þ iqðx; yÞ; ðwith r2tðx; yÞ ¼ 0;r2qðx; yÞ ¼ 0Þ ð1Þ
where tðx; yÞ is the temperature distribution, and qðx; yÞ is the thermal stream function. Clearly, if the temperature function
tðx; yÞ is given beforehand, the stream function qðx; yÞ can be determined by a difference of constant.

From Eq. (1), we can define a complex variable function as follows

HðzÞ ¼
Z z

zo

hðzÞdz ¼ Tðx; yÞ þ iQðx; yÞ; or hðzÞ ¼ H0ðzÞ ð2Þ

In thermal plane elasticity, the stresses, resultant forces and displacements can be expressed as [4,6]

rx þ ry ¼ 4Re/0
�ðzÞ;

ry � rx þ 2irxy ¼ 2 z/00
�ðzÞ þ w0

�ðzÞ
n o

ð3Þ

�Y þ iX ¼ /�ðzÞ þ z/0
�ðzÞ þ w�ðzÞ ð4Þ

2Gðuþ ivÞ ¼ j/�ðzÞ � z/0
�ðzÞ � w�ðzÞ þ 2GaHðzÞ ð5Þ

where /�ðzÞ and w�ðzÞ denote two complex potentials. In Eq. (5), HðzÞ is the function defined by Eq. (2), G is the shear modulus
of elasticity, and two constants are defined by

j ¼ ð3� mÞ=ð1þ mÞ; a ¼ at ; ðfor the plane stress problemÞ
j ¼ 3� 4m; a ¼ ð1þ mÞat ; ðfor the plane strain problemÞ ð6Þ

In Eq. (6), m is the Poisson’s ratio, and at is the thermal expansion coefficient per unit elevation of temperature.
In the analysis, the conformal mapping function z ¼ xð1Þ is used, for example, which maps the ellipse with its exterior

region in the z-plane into the unit circle with its exterior region in the 1-plane (Fig. 1).
In the following analysis, we denote

/ð1Þ ¼ /�ðzÞjz¼xð1Þ; wð1Þ ¼ w�ðzÞjz¼xð1Þ ð7Þ
Clearly, after using the mentioned conformal mapping, from Eqs. (1)–(7) we have

rx þ ry ¼ 4Re
/0ð1Þ
x0ð1Þ

ry � rx þ 2irxy ¼ 2
xð1Þð/00ð1Þx0ð1Þ � /0ð1Þx00ð1ÞÞ

ðx0ð1ÞÞ3
þ w0ð1Þ
x0ð1Þ

 !
ð8Þ

F ¼ �Y þ iX ¼ /ð1Þ þxð1Þ/
0ð1Þ

x0ð1Þ þ wð1Þ ð9Þ

2Gðuþ ivÞ ¼ j/ð1Þ �xð1Þ/
0ð1Þ

x0ð1Þ � wð1Þ þ 2aGBð1Þ; with Bð1Þ ¼ HðzÞjz¼xð1Þ
� �

ð10Þ

From Eqs. (8)–(10) we see that, if one obtains the complex potentials /ð1Þ and wð1Þ in the mapping plane, one can get the
stress and displacement in the physical plane.

In the study, the whole region is composed of two phase composites (Fig. 1(a)). The inclusion bounded by an ellipse R2

with two semi-axes a2; b2 contains a crack with length ‘‘2c” c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
2 � b2

2

q� �
. The crack configuration is denoted by R1c . For

the cracked inclusion bounded by the crack R1c and the elliptic contour R2, we have the following elastic constants and the
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