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a b s t r a c t

The Park–Paulino–Roesler (PPR) potential-based model is a cohesive constitutive model
formulated to be consistent under a high degree of mode-mixity. Herein, the PPR’s gener-
alization to three-dimensions is detailed, its implementation in a finite element framework
is discussed, and its use in single-core and high performance computing (HPC) applications
is demonstrated. The PPR model is shown to be an effective constitutive model to account
for crack nucleation and propagation in a variety of applications including adhesives,
composites, linepipe steel, and microstructures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Cohesive zone modeling of fracture processes dates to Dugdale’s strip yield model [1]. In this model, yield magnitude
closure stresses are applied between the actual crack tip and a notional crack tip, the length of the total plastic zone, to
circumvent the unrealistic prediction of infinite stresses at the crack tip. Barenblatt [2] placed material-specific stresses
according to a prescribed distribution in the aforementioned inelastic zone, leading to the many cohesive zone models
(CZMs) available today. Applications of CZMs abound in the literature. Hillerborg et al. [3] were the first to model failure
in a material by adapting a CZM into a finite element analysis. The cohesive finite element method (CFEM) has been used
to conduct studies across a wide range of material systems: rock (e.g. Boone et al. [4]), ductile materials at the microscale
(e.g. Needleman [5] and Iesulauro [6]), ductile materials at the macroscale (e.g. Tvergaard and Hutchinson [7] and Scheider
and Brocks [8]), concrete (e.g. Ingraffea et al. [9]; Elices et al. [10]; Park et al. [11]), bone (e.g. Tomar [12] and Ural and
Vashishth [13]), functionally graded materials (Zhang and Paulino [14]), and asphalt pavements (Song et al. [15]). Hui
et al. [16] and Park and Paulino [17] have presented a review of the literature in the field and thus the reader is referred
to these articles and the references therein.

The fracture behavior in potential-based cohesive zone models is characterized by a potential function, from which trac-
tion–separation behavior proceeds. Taking the first derivative of this potential function with respect to the displacement
separation, results in the cohesive tractions. The second derivative, in turn, provides the material tangent modulus. A cursory
search of potential-based CZMs in the literature will undoubtedly return hundreds of models. Needleman’s potential from
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1987 [5], often cited in the literature, describes the normal, Mode I, interaction with a polynomial potential; however, it is
limited because it only considers decohesion by normal separation. Tvergaard extended Needleman’s potential to better ac-
count for mode-mixity with the use of an interaction formula defining an effective displacement [18]. Needleman later
developed a potential accounting for debonding by tangential separation [19] whereby the normal and tangential interac-
tions are described by exponential and periodic functions, respectively. Alternatively, Xu and Needleman developed a poten-
tial where the normal and tangential separations are both described by exponential functions [20].

Park et al. published a unified potential-based CZM, the PPR (Park–Paulino–Roesler) CZM [21], that addresses the short-
comings of the prevailing potential-based CZMs in the literature, particularly with respect to mode-mixity, user flexibility,
and consistency. First, it characterizes different fracture energies and cohesive strengths in each fracture mode, an accom-
modation not made by most CZMs. Moreover, it provides for several material failure behaviors by allowing the modeler to
define the shape of the softening curve in both the normal and shear traction–separation relations; in most CZMs, softening
behavior is hard-coded and cannot be changed. Finally, and perhaps most important, it is consistent in anisotropic fracture
energy conditions; it demonstrates a monotonic change of the work-of-separation for both proportional and non-propor-
tional paths of separation, a quality not seen in most CZMs.

This paper describes the generalization of the PPR model to three dimensions, details its implementation in a finite ele-
ment framework, and presents its use in single-core and high performance computing (HPC) applications. We identify a vari-
ety of examples which assess the various features of the PPR model considering different loading conditions (e.g. quasi-static
and dynamic), mode-mixity, bulk material behavior, and interfacial behavior (investigating the parameter space that defines
the traction–separation relationship). The examples include a mode I T-peel specimen, a mixed-mode (I and II) bending spec-
imen, an edge crack torsion (ECT) specimen (modes II and III), the Battelle Drop-Weight Tear (BDWT) test, and intergranular
fracture (grain-boundary decohesion) at the microstructural scale.

Nomenclature

B strain-displacement matrix
E Young’s modulus
D material tangent stiffness matrix
D coupled damage parameter
f internal force vector
J Jacobian
K stiffness matrix
K strength coefficient
m, n non-dimensional exponents
N1, N2, N3, N4 shape functions for 8-noded cohesive element
n, t1, t2 opening and sliding directions
t traction vector
Tn normal cohesive traction
Tt effective tangential cohesive traction
Tt1, Tt2 tangential cohesive tractions in sliding directions
Tmax coupled coupled cohesive strength
a, b shape parameters
Cn, Ct energy constants
Dn normal separation
Dt effective sliding displacement
Dt1, Dt2 sliding displacements
Dmax

n ;Dmax
t max normal and tangential separations reached during loading/unloading

dn, dt normal and tangential final crack opening widths
dnc, dtc normal and tangential critical opening displacements at which Tn and Tt equal rmax and smax, respectively
�dn; �dt normal and tangential conjugate final crack opening widths
ep plastic strain
kn, kt initial slope indicators
m Poisson’s ratio
n, g natural coordinate system axes
rmax, smax normal and tangential cohesive strengths
/n, /t fracture energies
W PPR model’s potential function

h�i Macaulay bracket hxi ¼ 0; x < 0
x; x � 0

�
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