Accepted Manuscript

Combination of ultrasound-treated 2D g- C_3N_4 with Ag/black TiO_2 nanostructure for improved photocatalysis

Wan-Kuen Jo, Hee-Jin Yoo

PII: S1350-4177(17)30586-2

DOI: https://doi.org/10.1016/j.ultsonch.2017.12.019

Reference: ULTSON 4003

To appear in: *Ultrasonics Sonochemistry*

Received Date: 30 October 2017 Revised Date: 10 December 2017 Accepted Date: 11 December 2017

Please cite this article as: W-K. Jo, H-J. Yoo, Combination of ultrasound-treated 2D g-C₃N₄ with Ag/black TiO₂ nanostructure for improved photocatalysis, *Ultrasonics Sonochemistry* (2017), doi: https://doi.org/10.1016/j.ultsonch.2017.12.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Combination of ultrasound-treated 2D g- C_3N_4 with Ag/black TiO_2 nanostructure for improved photocatalysis

Wan-Kuen Jo* and Hee-Jin Yoo

Department of Environmental Engineering, Kyungpook National University

Daegu, 702-701, Korea

*Corresponding author: Tel., +82 53 950 6584; fax, +82 53 950 6579; E-mail address, wkjo@knu.ac.kr.

Herein, nanosheets of g-C₃N₄ (CN), prepared using a green ultrasonication process under various conditions, were combined with Ag/black TiO₂ nanocomposites (AgBT) to create two-dimensional (2D) CN/Ag/black TiO₂ tri-composites (CNAgBT). The thickness of the CN sheets varied with the ultrasonication conditions. The CNAgBT sample prepared using ultrasound-treated CN exhibited the highest average photocatalytic efficiencies for the degradation of two model pollutants, followed in decreasing order by AgBT, black TiO₂ (BT), sheet CN, bulk CN, and TiO₂. The order of pollutant degradation efficiencies by the photocatalysts was consistent with that of the charge carrier separation efficiencies. The degradation efficiency of the CNAgBT increased as the CN-to-AgBT ratio increased from 0.05 to 0.1, but decreased gradually for higher ratios between 0.15 and 0.20, indicating a lower optimal CN-to-AgBT ratio. A plausible photocatalytic degradation mechanism for the CNAgBT nanocomposites was proposed. Additionally, CNAgBT with a CN-to-AgBT ratio of 0.1 displayed a higher hydrogen generation rate with a maximum value of 21.5 mmol g⁻¹ over 5 h than

Download English Version:

https://daneshyari.com/en/article/7703335

Download Persian Version:

https://daneshyari.com/article/7703335

<u>Daneshyari.com</u>