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a b s t r a c t

Polymer-based laminated composite materials can fail by delamination. Cohesive zone
development occurs during delamination, where dissipation mechanisms take place.
Within a numerical framework, a fine discretization is needed along the cohesive zone
length to accurately capture the non-linear stress distribution. Knowing the cohesive zone
length beforehand is important for meshing purposes. This paper presents a literature
review of existing analytic expressions. The limitations and range of applicability of the
analytic formulas are discussed. Novel empirical formulas are proposed to predict the
cohesive zone length of homogeneous orthotropic materials with a crack growing under
pure mode I or pure mode II.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of cohesive zone model (CZM) has been widely used to model the non-linear processes which take place at the
near tip of cracks. The CZM has satisfactorily overcome some of the limitations of linear elastic fracture mechanics (LEFM)
based methods. It takes into consideration the failure process zone (FPZ), which in many engineering applications is not neg-
ligible in comparison with other dimensions of the structure (i.e. composite materials).

The CZM was introduced in the early sixties by Barenblatt [1] and Dugdale [2] to model different non-linear processes
while avoiding the stress singularity at the front of an existing crack. Barenblatt focused on brittle fracture while Dugdale
focused on plastic fracture. Later in the seventies, Hillerborg [3] extended the concept by proposing that a cohesive crack
may develop despite the absence of an existing flaw, by introducing crack initiation rules. The CZM assumes that the entire
FPZ is lumped into the crack plane. It becomes very efficient in situations where the crack path is known beforehand. For this
reason, it is widely used to model delamination in laminated composite materials.

The CZM concept is sketched in Fig. 1. The CZM represents the FPZ (damaged material) through a fictitious crack (dashed
line) able to transfer cohesive forces from one face to another. These forces are given by the so-called cohesive law (see
Fig. 2), which relates them with the crack opening displacements (COD). The cohesive zone length (CZL) is the distance at
the crack plane where the cohesive forces are acting.

Focusing on quasi-brittle materials and within the finite element method (FEM) framework, a fine discretization is
needed to correctly capture the stress distribution along the CZL in order to account for accurate energy dissipation. Some
researchers state that the range needed along the CZL is from three to ten elements [4,5]. Considering large structures or
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multiple crack paths this requirement might involve a high computational effort. Consequently, it is desirable to know the
size of the CZL beforehand in order to have a good compromise between accuracy and computational effort.

On the other hand, different strategies in the literature, reviewed by Bak et al. [6], can reduce this effort using coarser
meshes while ensuring accuracy. Turon et al. [4] proposed reducing the strength in order to enlarge the CZL and conse-
quently allow the use of coarser meshes. Strength modification reduces the accuracy on the damage onset prediction. How-
ever, once the cohesive zone is developed, the crack propagation is mainly controlled by the fracture toughness rather than
the strength of the material [4]. Nevertheless, an accurate CZL expression is required to know how the CZL scales with the
strength. Otherwise, the modified strength might lead to convergence problems or incorrect results.

Analytic expressions in the literature predict the CZL of isotropic materials for centrally notched specimens under pure
mode I and pure mode II loading. However, these expressions are for limiting scenarios such as a large crack in an infinite
sheet or a crack in a slender structure. Numerical investigations [5,7] show that the range of their applicability is not clearly
known. Based on the analytic bounds, this paper proposes a general expression to predict the CZL of orthotropic materials
under pure mode I and pure mode II loading for any structure size and material property.

Nomenclature

E1; E2 Young’s moduli
E01; E

0
2 plane strain Young’s moduli

m12; m13; m23, m21; m32; m32 Poisson’s ratios

m012; m
0
13; m

0
23, m

0
21; m

0
32; m

0
32 plane strain Poisson’s ratios

G12;G13;G23 shear moduli
k;q dimensionless parameters which define the orthotropy of the material
E0I; E

0
II equivalent elastic moduli

sI; sII interface stress
sIc; sIIc interface maximum strength
GIc;GIIc critical energy release rate
KIc;KIIc critical stress intensity factor
lchI; lchII characteristic length of the material

l0czI; l
0
czII cohesive zone length in a slender body

l1czI; l
1
czII cohesive zone length in an infinite body

M0
I ;M

0
II dimensionless parameter of the cohesive zone length for slender bodies

M1
I ;M1

II dimensionless parameter of the cohesive zone length for infinite bodies
dI; dII crack opening displacement
dIo; dIIo onset crack opening displacement
dIc; dIIc critical crack opening displacement
k penalty stiffness
h specimen thickness
x; y coordinates
Ne number of elements within the numerical cohesive zone length
le element length within the numerical cohesive zone length
lczim modified cohesive zone length
sim modified interface strength
nI;nII fitting parameter for a given cohesive law type where applicable, subscripts 1, 2, 3 are used to denote principal

axes while subscripts I and II denote properties under mode I and II loading, respectively

Acronyms
C-ELS Calibrated End Load Split
COD Crack Opening Displacement
CZL Cohesive Zone Length
CZM Cohesive Zone Model
DCB Double Cantilever Beam
ENF End Notched Flexural
FEM Finite Element Method
FPZ Failure Process Zone
LEFM Linear Elastic Fracture Mechanics
MMB Mixed Mode Bending
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