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a b s t r a c t

The finite block method in both the Cartesian coordinate and polar coordinate systems is
developed to evaluate the stress intensity factors and the T-stress for interface cracks in
bi-materials. The first order partial differential matrices can be constructed straightaway
based on the Lagrange series interpolation. The nodal values of displacement can be
obtained from a set of linear algebraic equations in strong form from both the governing
equation and the boundary conditions. In order to capture the stress intensity factors
and the T-stress at the crack tip accurately, the asymptotic expansions of the stress and dis-
placement around the crack tip are introduced with a singular core technique. For elasto-
dynamic fracture problems, the Laplace transform method and the Durbin’s inverse
techniques are utilised. The accuracy and the convergence of the finite element method
are demonstrated in three examples. Comparisons have been made with numerical solu-
tions by using the boundary collocation method and the finite element method.
Satisfactory numerical solutions are obtained with very few blocks in each example.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To determine the Stress Intensity Factors (SIFs) is a fundamental task for computational fracture mechanics in engineer-
ing. However, the second constant in the asymptotic expression of the crack-tip stress fields, named the T-stress, has to be
considered in elastoplastic fracture mechanics. This is because the T-stress has certain effects on the crack growth direction,
the shape and size of the plastic zone, the crack-tip constraint and the fracture toughness, etc (see [1–3]). Furthermore, in
engineering constructions, it requires one material to be bonded to another such as adhesive joints, protective coatings, com-
posite materials and thin films used in the manufacture of microelectronic circuits, etc. Dissimilar bi-materials or layered
composites are often incorporated into a variety of components, such as smart structure sensors, actuators, and broadband
magnetic probes. Having been recognised as one of the common failure modes of the general dissimilar bi-materials, the
interface cracks could also be developed in the piezo-electro-magneto-elastic structures and thus affect the features of
the electro-magneto-elastic apparatus. Unlike cracks in a body with homogeneous material, the stress intensity factors
for the interface crack are coupled. Theoretical studies show that on the interface the stresses are of oscillatory behaviour
of singularity and overlapping of crack surfaces at the crack tip.

In order to obtain the analytical solutions with partial differential equations in two-dimensions, the significant contribu-
tions towards understanding the physical and bi-material crack problem were made by Muskhelishvili [4], Williams [5], Sih
and Rice [6], England [7], Erdogan [8], etc. As it is too difficult to obtain the analytical solution in closed form for engineering
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problems, computational methods need to be developed. So far the Finite Element Method (FEM) is the most widely used
computational method in engineering. Its applications in the interface crack problems can be found in references by Lin
and Mar [9], Van et al. [10] and Hamoush and Ahmed [11] for two-dimensional problems. Since 1980s, the Boundary Ele-
ment Method (BEM) has been an alternative method to obtain the solutions for the boundary value problems with some
unique advantages, see Lee and Choi [12], Yuuki and Cho [13]. The M-integral technique with a properly selected auxiliary
solution was proposed by Sladek et al. [14–19] to evaluate the T-stress for thermoelastic stress, elastodynamic stress and the
interfaces using the BEM. It has been shown that the leading-order term dominance in the asymptotic expansion of stresses
at the crack-tip vicinity is limited for elastoplastic behaving structures.

The Differential Quadrature Method (DQM) is a different kind of numerical technique for boundary value problems pro-
posed by Bellman [20] in 1970. It was discovered that the DQM produced better convergent solutions than the FEM, when a
similar number of discrete points/nodes are used. There has been comprehensive review of the DQM and its applications
since the first paper was published by Bert and Malik [21]. To evaluate the stress intensity factors accurately for both static
and dynamic cases, many new techniques have been developed recently. Extended finite element method was applied to
dynamic cracks for piezoelectric solids by Bui et al. [22], Liu et al. [23], Bui [24] and Yu et al. [25]. The singular edge-
based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids was demonstrated by
Liu et al. [26]. However, each numerical algorithm has its own advantages and disadvantages. In addition, the numerical
modelling can be such complicated to be dealt with by using the finite element method, etc. For example, the fundamental

Nomenclature

Latin symbols
a crack length
AðaÞ;BðaÞ;CðaÞ coefficients for different media
D;x;D;y partial differential matrices
bx and by body forces
c0 characteristic speed
E;G Young’s and shear modules
FðnÞ;GðgÞ shape functions in mapped domain
HðtÞ Heaviside function
K number of sample in Laplace domain
KI þ iKII complex stress intensity factors
M;N seeds numbers
Ni shape function in physical domain
nðnx;nyÞ normal to the boundary
ðr; hÞ polar coordinate system
r0 size of singular core
R radius of disk
sk Laplace parameter
t0 characteristic time
T0;r free parameters of Laplace transformation
TðaÞ T-stress
u0
x ;u

0
y ; t

0
x and t0y boundary displacement and traction conditions

W width of plate
ðx; yÞ coordinate in complex form
z complex

Greek symbols
e; ĵ material parameters
U and W stress functions of complex
Cu and Cr displacement and traction boundaries
jðaÞ parameter of material
kn eigenvalues
lðaÞ shear modulus
q mass density
ðrx;ry; sxyÞ stress tensor
ðn;gÞ coordinate in mapping domain
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