Accepted Manuscript

Fe-based Heterogeneous Catalysts for the Fischer-Tropsch Reaction: Sonochemical Synthesis and Bench-Scale Experimental Tests

Alberto Comazzi, Carlo Pirola, Mariangela Longhi, Claudia L. M. Bianchi, Kenneth S. Suslick

PII: S1350-4177(16)30253-X

DOI: http://dx.doi.org/10.1016/j.ultsonch.2016.07.012

Reference: ULTSON 3310

To appear in: *Ultrasonics Sonochemistry*

Received Date: 3 May 2016 Revised Date: 12 July 2016 Accepted Date: 19 July 2016

Please cite this article as: A. Comazzi, C. Pirola, M. Longhi, C.L. M. Bianchi, K.S. Suslick, Fe-based Heterogeneous Catalysts for the Fischer-Tropsch Reaction: Sonochemical Synthesis and Bench-Scale Experimental Tests, *Ultrasonics Sonochemistry* (2016), doi: http://dx.doi.org/10.1016/j.ultsonch.2016.07.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fe-based Heterogeneous Catalysts for the Fischer-Tropsch Reaction: Sonochemical Synthesis

and Bench-Scale Experimental Tests

Alberto Comazzi^{1*}, Carlo Pirola¹, Mariangela Longhi¹, Claudia L. M. Bianchi¹, Kenneth S. Suslick²

¹ Università degli Studi di Milano, Dipartimento di Chimica, via Golgi, 19 - 20133 Milano, Italy

² University of Illinois at Urbana-Champaign, School of Chemical Sciences, 505 S. Mathews Av., Urbana,

IL 61801, USA

Corresponding author: Alberto Comazzi (alberto.comazzi@unimi.it)

Abstract

The sonochemical synthesis of nanostructured materials owes its origins to the extreme conditions

created during acoustic cavitation, i.e., the formation of localized hot spots in the core of collapsing bubbles

in a liquid irradiated with high intensity ultrasound (US). In particular, in the present work a sonochemical

synthesis has been investigated for the production of three different iron-based samples supported on SiO₂

and loaded with different metals and promoters (10 %wt of Fe; 30 %wt of Fe, 2 %wt of K and

3.75 %wt of Cu) active in the Fischer-Tropsch (FT) process. Sonochemically synthesized heterogeneous

catalysts were characterized by BET, XRPD, TPR, ICP, CHN, TEM, SEM and then tested in a fixed bed FT-

bench-scale rig fed with a mixture of H₂ and CO at a H₂/CO molar ratio equal to 2, at activation temperatures

of 350- 400 °C and reaction temperatures of 250- 260 °C. The experimental results showed that the

ultrasonic samples are effective catalysts for the FT process. Notably, increasing the activation temperature

increased CO conversion, while product selectivity did not diminish. All the sonochemically prepared

samples presented in this work provided better catalytic results compared to the corresponding traditional FT

impregnated catalysts.

Keywords: Fischer Tropsch, Iron based catalysts, Ultrasound, Syngas, Sonochemical synthesis.

1

Download English Version:

https://daneshyari.com/en/article/7703728

Download Persian Version:

https://daneshyari.com/article/7703728

<u>Daneshyari.com</u>