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a b s t r a c t

A three-node triangular element fitted to the numerical manifold method with continu-
ous nodal stress called Trig3-CNS (NMM) element for accurately modeling two-
dimensional linear elastic fracture problems is presented. By adopting two cover systems,
namely, the mathematical cover and physical cover, the numerical manifold method
(NMM) could easily solve continuous and discontinuous problems in a unified way. In
contrast to the three-node triangular element (Trig3), the Trig3-CNS element has higher
order of approximations, much better accuracy and continuous nodal stress. Moreover, it
is free from the ‘‘linear dependence” which otherwise cripples many of the partition of
unity based methods with high order approximations. The purpose of the present work
is to synergize the advantages of both the recently developed Trig3-CNS element and
the NMM to precisely model two-dimensional linear elastic fracture problems. A number
of numerical examples indicate the accuracy and robustness of the present Trig3-CNS
(NMM) element.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fracture behavior of cracked brittle structures, such as hard rocks, depends greatly upon the stress and strain in the
vicinity of the crack tip. Accurate prediction of the singular stress fields near the crack tip using analytical, semi-analytical
and experimental methods for complex engineering problems is very difficult. Therefore, many effective numerical methods
such as the finite element method (FEM) [1], the smoothed finite element method (S-FEM) [2], the boundary element
method (BEM) [3], the meshfree method [4], the extended finite element method (XFEM) [5] and the generalized finite ele-
ment method [6] have been proposed to fulfill this task.

FEM have been used to simulate crack problems for several decades [7,8]. Application of FEM to such class of problems
faces several difficulties relating to the need to construct a mesh which should conform to the crack faces, and to design sub-
stantially more refinedmesh around the crack tip than in the remainder of the problem domain in order to obtain sufficiently
accurate solution [5]. When considering the growth of cracks, the difficulties are further amplified, because then remeshing
of the vicinity of the crack tips is inevitable. Additionally, it is well known that accuracy of some classic iso-parametric ele-
ments is highly sensitive to the quality of meshes [9]. However, it is difficult to avoid distorted elements in the simulation of
fracture propagation which requires numerous remeshing tasks. In order to avoid tip-remeshing, the algorithm of edge
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rotation for computational fracture has been proposed in the framework of FEM [10–12]. S-FEMs [2] have been developed
recently by Liu and his co-workers to improve accuracy of FEM. In the simulation of crack problems, S-FEMs also need to
construct a mesh conforming to the crack faces which will hinder the application of S-FEMs to complex crack propagation

Nomenclature

Xm
i mathematical patch (MP)

nm number of mathematical patches
X problem domain
Xp

j�i j-th physical patch generated from the i-th mathematical patch Xm
i

np
i number of physical patches that are generated from Xm

i
Ei manifold element
wiðxÞ weight function

GNp
j�i generalized node of physical patch Xp

j�i

np number of all the physical patches
ukðxÞ local approximation function
dk array of unknown coefficients
pðxÞ matrix of polynomials bases
FeðxÞ first items of Williams’ displacement series
ðr; hÞ polar coordinates with regard to the polar system defined at the crack tip
uhðxÞ global approximation
npj number of physical patches for a manifold element Ej
Li area coordinate
A moment matrix
B basis matrix
a vector of nodal displacements
/kðxÞ shape function corresponding to physical patch Xp

k or node k

n[i] number of supporting nodes for physical patch Xp
i

rreal
ij stress tensor corresponds to the actual state

erealij strain tensor corresponds to the actual state

ureal
i displacement vector corresponds to the actual state

raux
ij stress tensor corresponds to the auxiliary state

eauxij strain tensor corresponds to the auxiliary state

uaux
i displacement vector corresponds to the auxiliary state

Iðreal; auxÞ interaction integral
W ðreal; auxÞ interaction strain energy
R domain radius
h size of mathematical patch
Rd factor which can determine the size of domain radius R
q(x) bounded weighting function
n total number of the nodes in the computational model
ed displacement norm
ee energy norm
uex exact or analytical displacement vector solution
unum numerical displacement vector solution
eex exact or analytical strain vector solution
enum numerical strain vector solution
D elastic matrix
E Young’s modulus
v Poisson’s ratio
M bending moment
I moment of inertia
P traction
a length of crack
KI stress intensity factor corresponding to mode I
KII stress intensity factor corresponding to mode II
MI normalized stress intensity factor corresponding to mode I
MII normalized stress intensity factor corresponding to mode II
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