Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Analytical fractal model for rugged fracture surface of brittle materials

Lucas M. Alves^{a,*}, A.L. Chinelatto^b, Edson Cezar Grzebielucka^b, Eduardo Prestes^b, L.A. de Lacerda^c

^a GTEME – Grupo de Termodinâmica, Mecânica e Eletrônica dos Materiais, Departamento de Engenharia de Materiais, Setor de Ciências Agrárias e de Tecnologia, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Calvalcanti, 4748, Campus UEPG/Bloco CIPP – Uvaranas, Ponta Grossa, PR CEP. 84030.900, Brazil ^b Departamento de Engenharia de Materiais, Setor de Ciências Agrárias e de Tecnologia, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Calvalcanti, 4748, Campus UEPG/Bloco CIPP – Uvaranas, Ponta Grossa, PR CEP. 84030.900, Brazil

^c LACTEC – Instituto de Tecnologia para o Desenvolvimento, Universidade Federal do Paraná - PPGMNE, Centro Politécnico da Universidade Federal do Paraná, Cx. P. 19067, Curitiba, PR, Brazil

ARTICLE INFO

Article history: Received 28 August 2015 Received in revised form 15 May 2016 Accepted 17 May 2016 Available online 26 May 2016

Keywords: Fractal dimension Fracture profile Mortar Heavy clay Roughness Self-affine surface

ABSTRACT

The fractal modeling of a rugged fracture surface has received different purposes. However none definitive model for the most of materials has been reached. Therefore, a general selfaffine fractal model is proposed for fracture surfaces and applied to heavy clay and mortar. An analytical expression for the rugged crack length is obtained for application on fractal fracture mechanics. Stereoscopic images are obtained for each tested specimens. Image processing filters are used to extract the rugged profile of the cracks. The box-counting and sand-box methods are used on the crack profile to obtain the local and the global roughness exponents. Specimens prepared under different conditions validated the model. Mortars and heavy clay specimens were characterized by measuring their modulus of rupture and the rugged crack profile under 3-point bending tests. A good agreement between the model and the experimental results was observed. A strong correlation between the fractal dimension and the sintering temperature for heavy clay specimens was verified. The results also showed that the increasing rugged crack length of the profile of the fractured mortar specimens is well correlated with the increase in water/cement ratio. These results validate the application of the proposed model for estimating the fracture strength of brittle materials.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fracture surface is a record of the information left by the fracture process. Generally, the rugged fracture surface profile has fractal geometry, so it is possible to establish a relationship between its topology and physical quantities of the fracture mechanics using fractal characterization techniques. However, the classical fracture mechanics (CFM) was developed idealizing a flat, smooth, and regular fracture surface, as the geometry of crack surfaces is usually rugged and cannot be easily described by the Euclidean geometry [1]. In this sense, the mathematical basis of CFM considers an energetic equivalent between the rugged and the projected fracture surfaces [2]. Besides the mathematical complexity, part of this

* Corresponding author.

http://dx.doi.org/10.1016/j.engfracmech.2016.05.015 0013-7944/© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: lucasmaximoalves@gmail.com (L.M. Alves), adilsonchinelatto@gmail.com (A.L. Chinelatto), alkimin@lactec.org.br (L.A. de Lacerda).

Nomenclature	
Latin cho	
0	index to denote measurements taken on the projected plane
а	minimal area of fracture surface
ΔA	area of fracture surface
	3; <i>A</i> r1,, <i>A</i> r30 mortar and ceramic samples
	3; <i>Br</i> 1,, <i>B</i> 30 mortar and ceramic samples
	3; <i>Cr</i> 1,, <i>Cr</i> 30 mortar and ceramic samples
d r r r r r	infinitesimal increment D3; Dr1,, Dr30 mortar and ceramic samples
D_{1}, D_{2}, L D_{B}	fractal box dimension
D_B D_f	fractal dimension
D_f D_D	divider dimension
D_{BC}	fractal dimension measured by box-counting method
e_0	fractal cell size or minimal crack length in transversal direction
Ē	elastic or Young' s modulus
E_0	crack length measured in transversal direction
ΔE_0	variation of crack length measured in transversal direction
f	general functions
g	general functions or subscript index for global quantity
G	elastic energy release rate
h_0	fractal cell size or minimal crack length in vertical direction
H H ₀	Hurst's exponent plane projected crack height
ΔH_0	variation in the plane projected crack height
K	multiplicative factor
K K _x	multiplicative factor in x-direction
K _y	multiplicative factor in y-direction
ľ	subscript index for local quantity
L	rugged crack length
L _{BC}	rugged crack length measured by box-counting method
l_x, l_y, l_z	rulers length or scale in the x-direction, y-direction, z-direction, respectively
l_0	fractal cell size or minimal crack length in propagation direction
L_0	plane projected crack length measured in propagation direction
L_{0S}	saturation plane projected crack length measured in propagation direction
L _{OC}	Griffith's critical crack length
$\Delta L \\ \Delta L_0$	rugged crack length distance between two points of the crack (the projected length of the crack)
ΔL_{0C}	critical crack length
N_L	number of units of the crack length in longitudinal or propagation direction
NT	number of units of the crack length in transversal direction
Ň _V	number of units of the crack length in vertical or height direction
N_x	number of units of the crack length in the growth direction
N_y	number of units of the crack length in the perpendicular direction
sat	subscript index indicate saturation
Y_0	shape function
<i>x</i> , <i>y</i> , <i>z</i>	spatial coordinates
	Az, incremental measure length in x-direction, y-direction, z-direction
$\Delta z_x, \Delta z_y$	fluctuation or roughness mean squares or incremental measure of crack height in x-direction, y-direction, respectively
w	width of specimen test
Greek letters	
β^*	exponent
δ^{p}	incremental measure
∂	partial derivative
$\varepsilon_L, \varepsilon_T$	horizontal and vertical scale of the fractal scaling
γ_e, γ_p	elastic and plastic specific energy surface, respectively
λ_x	amplification factor scale in x-direction

Download English Version:

https://daneshyari.com/en/article/770389

Download Persian Version:

https://daneshyari.com/article/770389

Daneshyari.com