Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Using unit cell simulations to investigate fracture due to compression-tension loading

Structural Impact Laboratory (SIMLab), Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Rich. Birkelands vei 1A, NO-7491 Trondheim, Norway

ARTICLE INFO

Article history: Received 1 December 2015 Received in revised form 28 April 2016 Accepted 29 April 2016 Available online 14 May 2016

Keywords: Material tests Unit cell simulations Compression-tension load Ductile fracture Cleavage fracture

ABSTRACT

Experiments regarding impact against X65 steel pipes show that fracture typically arises in areas subjected to large compressive strains before tension. Fracture surfaces from these areas are brittle in character despite the material exhibiting ductile behaviour elsewhere. Smooth and notched tensile material tests always produced ductile fracture through nucleation, growth and coalescence of voids. The ductile-to-brittle transition seen in the component tests was however recreated in notched axisymmetric material tests, where the specimens were compressed to various levels of plastic strain before being stretched to failure. Increasing compression before tension showed a decrease in strain to fracture as hypothesised, and an increase in the cleavage surface fraction. In an attempt to gain a better understanding of this behaviour, unit cell simulations subjected to tension only and compression-tension loading were carried out. As well as exploring different chosen stress triaxialities, global analyses of the material tests were used to provide an average stress triaxiality for the axisymmetric unit cell simulations. These global simulations were able to represent the material tests with good accuracy. In tension tests where the stress triaxiality was fairly constant (notched tests), the unit cell analyses were able to predict a strain to coalescence within reasonable margin compared with the experimental values. Unit cell simulations including the compressive phase show that the higher the magnitude of the stress triaxiality is during compression, the higher the local stress in the cell, which in turn may trigger cleavage fracture.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Today and for all foreseeable future, steel pipelines are and will be used extensively for transporting oil and gas. These pipelines are situated in potentially dangerous environments, where impact loads from e.g. anchors or trawl gear pose a particularly hazardous threat [1]. Pipe impact tests have shown that fracture is likely to occur directly underneath the striker during the elastic recovery after maximum displacement [2,3]. In this area of the pipe the material is heavily compressed before the loading is reversed into tension, which can cause a ductile-to-brittle transition [4]. Earlier, Ludley and Drucker [5] made bent-beam tests which emulate the strain history from the pipe (compression followed by tension), and a ductile-to-brittle transition was observed at room temperature for an estimated 60% precompression.

Corresponding author.
E-mail address: martin.kristoffersen@ntnu.no (M. Kristoffersen).

http://dx.doi.org/10.1016/j.engfracmech.2016.04.044 0013-7944/© 2016 Elsevier Ltd. All rights reserved.

Nomenclature	
Latin	
a	specimen radius at notch or neck root
A 4.	initial cross-sectional area
A_{r}	cross-sectional area at load reversal
b_i	material constants for Voce hardening law
\vec{C}_i	material constants for kinematic hardening law
D	diameter
D_0	initial diameter
D _r	diameter of specimen in the pipe's radial direction
$D_{ heta}$	diameter of specimen in the pipe's circumferential direction
E E.	roung's modulus mesoscopic strain along radius
E11 E22	mesoscopic strain along circumference
E ₃₃	mesoscopic strain along axis of symmetry
E _e	mesoscopic effective strain
E_f	mesoscopic strain to failure
Er	relative mesoscopic strain to failure
f	yield function
Г Ц	force measured by load cell
п Но	half of initial height of unit cell
H_c	current half of height of unit cell
H_{f}	half of height of unit cell at void coalescence
H_r	half of height of unit cell at load reversal
N_V	number of Voce terms in constitutive relation
Nχ	number of backstresses in constitutive relation
Q_j	material constants for Voce hardening law
r R	profile radius of notch at the root
Ro	initial radius of unit cell
R_c	current radius of unit cell
R _H	isotropic hardening variable
R_y	point of re-yielding
U	point of unloading
$\frac{W_{cr}}{W}$	plastic "work per volume" to failure by σ_1 when $\sigma_1 > 0$
VV cr	plastic work per volume to failure by δ_1
Greek	
γ _i	material constants for kinematic hardening law
E e	strain strain tensor
6 Ess	strain along specimen axis
825 8200	accumulated strain
E _f	absolute fracture strain
$\tilde{\epsilon_r}$	relative fracture strain
ε^p	plastic strain
е р	plastic strain tensor
E _{eq}	equivalent plastic strain at onset of pecking
dλ	nlastic narameter
μ	friction coefficient
v	Poisson ratio
ho	density
σ	stress
σ	Cauchy stress tensor
σ. σ.	suress unaxiality = σ_H/σ_{eq} viald stress
00	yiciu suicss

Download English Version:

https://daneshyari.com/en/article/770391

Download Persian Version:

https://daneshyari.com/article/770391

Daneshyari.com