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a b s t r a c t

This paper focuses on establishing conservation integrals for nonlinear bimaterial and
layered ferroelectrics. Employing the infinitesimal transformation, we obtain the invariant
condition for ferroelectrics in the sense of Noether’s theorem. A revised ~Ji-vector path-inde-
pendent integral is achieved for homogeneous ferroelectrics both in the global and local
coordinate systems. The path-independence of revised ~J1-integral in bimaterial and layered
ferroelectrics is demonstrated, with different electric crack surface conditions considered.
Moreover, the crack-tip ~J1-integral can be interpreted as energy release rate. Numerical
simulations in layered ferroelectrics are presented to show characteristics of conservation
integrals with respect to layer thickness and combined external loading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to strong mechanical–electric coupling effects and quick response to external excitations, bimaterial and layered fer-
roelectrics have various applications in smart materials and structures, such as micro-electro-mechanical systems (MEMS),
ultrafast-switching room-temperature detectors, and ferroelectric random access memories [1,2]. Unfortunately, these
attractive properties come with drawbacks. Cracks and flaws inevitably emerge on the interfaces of ferroelectric materials
during manufacturing and serving [3]. Structural reliability concerns call for a better understanding of the fracture of bima-
terial and layered ferroelectrics.

Classical routes of studying crack problems are along constructing field equations and solving corresponding boundary
value problems directly (e.g., [4,5]). However, it is difficult to obtain exact solutions to ferroelectric interfacial crack problems
owing to mathematic complexities. Conservation integrals provide a different way to obtain critical parameters governing
the extension of cracks, which relate to clear physical concepts such as the energy release rate and require merely a contour
integral far from the crack tip. Consequently, investigations on conservation integrals become a hotspot in past few decades.
A comprehensive review is referred to Chen and Lu [6]. Fundamental methods of constructing conservation integrals can be
classified into three categories:

(i) The first type is employing Noether’s theorem. Noether [7] revealed the correspondence between conservation inte-
grals and symmetry groups of a variational problem. Based on this cornerstone, Knowles and Sternberg [8] developed
J-integral, M-integral and L-integral in linearized and finite elastostatics considering the invariance of the Lagrangian
density under spatial infinitesimal transformations, while Fletcher [9] established conservation integrals in linear
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elastodynamics through a more general group of transformations. Olver [10] outlined general conditions for the exis-
tence of generalized symmetries in homogeneous elastostatic variational problems. Shi and Kuang [11] obtained con-
servation integrals for linear electro-magneto-elastic solids relying on similar manipulations.

(ii) The second type is from the energy–momentum tensor proposed by Eshelby [12] for linear or nonlinear elasticity,
analogous to the Maxwell’s stress tensor in electrostatics. Eischen and Herrmann [13] established conservation inte-
grals by subjecting the Lagrangaian density to the gradient, curl, and divergence operations in space coordinates.
Wang and Shen [14] derived conservation integrals and energy release rates in linear electro-magneto-elastostatics.

(iii) The third type is using Betti’s reciprocal theorem. Bueckner [15] proposed a work conjugate integral based on Betti’s
reciprocal theorem, which are used to construct weight functions for calculating crack dominant parameters. J-inte-
gral and M-integral are merely two special cases of the work conjugate integral [16].

Conservation integrals for interfacial cracks in bimaterial and layered composites have also been widely studied. Specif-
ically, J-integral constitutes a robust approach to determine critical parameters of interfacial crack problems. Atkinson [17]
applied the J-integral to plane and anti-plane crack problems of quasi-static elastic layers through a specific integral contour.
Using the two state integral [18] that is an important variant of J-integral, Yau and Wang [19] obtained the stress intensity

Nomenclature

aijkl, �aij, ��aijkl,
���aijklmn, ����aijklmnrs, bijkl, cH

ijkl, f ijklmn, gijklmn coefficient tensors of electric enthalpy density
a0, a1, a2, a3, a4, a5, a6, b1, b2, b3, c1, c2, c3, f1, f2, f3, f4, f5, f6, g1, g2, g3 special coefficients of electric enthalpy density for

tetragonal crystals
AI

fix, AII
fix small fixed regions around the crack tip before the crack extends

AI
move, AII

move small moving regions at the crack tip after the crack extends
Di, Ei the electric displacement and the electric field
G energy release rate of the crack extension
hI, hII thickness of ferroelectric layer
h electric enthalpy density of ferroelectrics
~h electric enthalpy of the ferroelectric body
H electric enthalpy per unit thickness
~Ji-vector revised J-integral vector for ferroelectrics
l length of crack extension
l0 characteristic thickness of a domain wall
L crack length
Mi�i coordinate transformation tensor
ni normal vector to boundary surface
Pi Pi;j electric polarization vector and its gradient
~Sik energy-momentum tensor for ferroelectrics
rC radius of integral contour
t normal tensile force
ti surface traction vector
ui mechanical displacement vector
ðx1; x2; x3Þ global Cartesian coordinate system
ðx�1; x�2; x�3Þ local Cartesian coordinate system
ðX1;X2Þ a moving Cartesian coordinate system fixed at the crack tip
ðh;u; cÞ Euler angles
w Helmholtz free energy density for ferroelectrics
/ electric potential
rij, eij stress tensor and strain tensor
nij, gi micro-forces
vi internal micro-force vector
x electric surface charge density
x0 constant surface charge density to balance the normal component of the initial spontaneous polarization
xA electric surface charge increment
j0 dielectric permittivity of free space
Ce,C0e the outward boundaries of AI

fix þ AII
fix and AI

move þ AII
move

Ua,Raj generalized displacement vector and generalized stress tensor
T superscript denoting the transposition of a tensor
+, � superscripts denoting the upper and the lower interfaces of the crack
o( ) higher order infinitesimal
0

superscript denoting the state after infinitesimal transformation
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