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a b s t r a c t

Approximate analytical solution for crack interacting with a gas-filled void is developed on
the basis of Eshelby equivalent inclusion theory and transformation toughening theory. As
validated by detailed finite element analysis the approximate solution has good accuracy
for prediction of mode I, mode II and I/II mixed mode crack-tip stress intensity factors
under plane strain loading conditions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gas-filled void (GFV) may be produced in the metal casting process and nucleated and grow in neutron irradiated fusion
materials [1]. The GFVs often act as sources of stress concentration, leading to crack nucleation and growth. On the other
hand, the gas pressure in the GFV affects growth (or shrinkage) and motion of the GFV [1,2], and thus greatly influences
the fracture strength of metals containing GFVs. Therefore, it is of significant to analyze the interaction between crack
and GFV. However, due to complexity of the boundary-value problems of elasticity, an analytical solution has not yet been
obtained.

Nevertheless, a GFV may be viewed as an inhomogeneous inclusion embedded in matrix [3]. According to Eshelby equiv-
alent inclusion theory [4], an inhomogeneous inclusion can be transformed to a homogeneous one with a transformation
strain. Thus, the crack–GFV interaction can then be determined on the basis of the transformation toughening theory
[5–8]. Eshelby equivalent inclusion theory and transformation toughening theory provide an alternative approach to solve
the problem. Based on this approach we have obtained several approximate analytical solutions for mode I and mode II
cracks interacting with an inhomogeneity of arbitrary shape and elastic properties [7–12].

In the present study, a GFV will be converted to a homogeneous inclusion with transformation strain according to Eshelby
equivalent inclusion theory. On the basis of transformation toughening theory, some simple approximate formulas in closed-
form are developed to predict the influence of the GFV on the crack-tip stress intensity factor (SIF). Detailed finite element
analysis is performed to validate the developed formulas.

2. Mode and formulation

Fig. 1a shows the problem to be solved, where a GFV of arbitrary shape is located in crack-tip stress field. The crack-tip SIF
will be changed due to presence of the GFV. The crack-tip SIF is a function of the size, shape and location of the GFV, as well
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as gas pressure in the GFV. Evidently, an exact solution for the problem cannot be obtained for a three-dimensional GFV with
arbitrary shape. Hence, we simplify the analysis in a plane strain model, which conveys the essence of a three dimensional
problem [13]. According to Eshelby equivalent inclusion theory the GFV can be identified to an equivalent homogeneous
inclusion with a transformation strain, as shown in Fig. 1b. The stress in the equivalent homogeneous inclusion can be
expressed by either

r ¼ CmeI; ð1Þ

or

r ¼ Cm ðS� IÞeT þ eA� �
; ð2Þ

where eI is the elastic strain in the equivalent homogeneous inclusion, Cm is the elastic tensor of the matrix material, S is the
Eshelby tensor, depending solely upon the shape of the inclusion and Poisson’s ratio of the matrix material, I is the unit ten-
sor, eT is the transformation strain, eA is the crack-tip strain in the absence of the GFV. Substituting Eq. (1) into Eq. (2) yields

eT ¼ ðS� IÞ�1e; ð3Þ

where

e ¼ eI � eA: ð4Þ

Thus, the transformation strain can be determined as long as the elastic strains in the domain X occupied by the inclusion are
available.

For a differential element dX with circular section in domain X (Fig. 1b), the Eshelby tensor for isotropic materials under
plane strain condition can be represented by a 3 � 3 matrix

S ¼ 1
8ð1� mÞ

5� 4m 4m� 1 0
4m� 1 5� 4m 0
0 0 6� 8m

2
6664

3
7775; ð5Þ

Nomenclature

a crack length
Cm elastic tensor of matrix material
E, m Young’s module and Poisson’s ratio of matrix material
eA applied strain tensor in the absence of GFV
eT transformation strain tensor
eI elastic strain tensor in an equivalent homogenous inclusion
GFV Gas-filled void
I unit tensor
Ktip

I ;Ktip
II crack-tip SIFs for mode I and II cracks

KI;K II externally applied SIFs for mode I and II cracks
p gas pressure
R radius of circular GFV
(r0, h0) center coordinate of circular GFV
(r, h) polar coordinates defined at crack tip
S Eshelby tensor
SIF stress intensity factor
X domain occupied by GFV

(a) (b)

Fig. 1. (a) Crack interacting with a GFV; and (b) the GFV may be equivalent to a homogenous inclusion with transformation strain eT.

H. Li, Z. Li / Engineering Fracture Mechanics 134 (2015) 168–173 169



Download English Version:

https://daneshyari.com/en/article/770451

Download Persian Version:

https://daneshyari.com/article/770451

Daneshyari.com

https://daneshyari.com/en/article/770451
https://daneshyari.com/article/770451
https://daneshyari.com

