international journal of hydrogen energy XXX (2018) $1\!-\!1\,6$

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO₃ and commercial α-Al₂O₃

Gilvan P. Figueredo ^{a,b,*}, Rodolfo L.B.A. Medeiros ^c, Heloísa P. Macedo ^c, Ângelo A.S. de Oliveira ^d, Renata M. Braga ^e, José M.R. Mercury ^{b,f}, Marcus A.F. Melo ^c, Dulce M.A. Melo ^{a,c}

^a Postgraduate Program in Chemistry, Federal University of Rio Grande Do Norte — UFRN, 59078-970, Natal, RN, Brazil

^b Academic Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão — IFMA, 65030-005, São Luís, MA, Brazil

^c Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande Do Norte — UFRN, 59078-970, Natal, RN, Brazil

^d Postgraduate Program in Petroleum Science and Engineering, Federal University of Rio Grande Do Norte — UFRN, 59078-970, Natal, RN, Brazil

^e Agricultural School of Jundiaí, Federal University of Rio Grande Do Norte — UFRN, 59280-000, Macaíba, RN, Brazil ^f Postgraduate Program in Materials Engineering, Federal Institute of Education, Science and Technology of Maranhão — IFMA, 65030-005, São Luís, MA, Brazil

ARTICLE INFO

Article history: Received 4 February 2018 Received in revised form 27 April 2018 Accepted 28 April 2018 Available online xxx

Keywords: Hydrogen Carbon nanotubes Microwave synthesis LaAlO₃ Ni Dry reforming of methane

ABSTRACT

A systematic and comparative study was made to determine the influence of perovskitetype LaAlO₃ and commercial α -Al₂O₃ on the performance of nickel-based catalysts in dry reforming of methane (DRM). The perovskite-type LaAlO₃ was selected due to its characteristics of solid state semiconductor with oxygen vacancies and high structural stability. The catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), N₂ adsorption-desorption, temperature programmed reduction (TPR-H₂), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalyst performance was evaluated based on activity tests (600-800 °C) and short- and long-term stability (10 and 20 h) at 700 °C at a GHSV (Gas Hourly Space Velocity) of 18 and 72 L $g^{-1} h^{-1}$. The TPR-H₂ profiles indicate that the oxygen vacancies on the perovskite surface exerted a strong effect on the reduction temperature and reducibility of the NiO nanoparticles, resulting in weak Ni⁰/support interaction. The results of the tests after 10 h under GHSV of 18 L g^{-1} h⁻¹ indicate that the Ni/LaAlO₃ catalyst is 7.8 and 11.5% more stable than Ni/α - Al_2O_3 in the conversions of CH_4 and CO_2 , respectively. The higher stability and activity of Ni/LaAlO3 is directly ascribed to the presence of NiO (3.38 wt%) after activation, which promoted the formation of carbon nanotubes (CNT) and increased the dispersion of the metallic phase. Even under severe conditions of activation and reaction (high GHSV), as in the long-term test, the Ni/LaAlO₃ catalyst showed a 37.2% higher H_2 yield than the Ni/ α -Al₂O₃. Analyses by TEM indicate that the Ni/ α -Al₂O₃

* Corresponding author. Postgraduate Program in Chemistry, Federal University of Rio Grande do Norte – UFRN, 59078-970, Natal, RN, Brazil.

E-mail address: gilvanfigueredo@ifma.edu.br (G.P. Figueredo). https://doi.org/10.1016/j.ijhydene.2018.04.224

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Figueredo GP, et al., A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO₃ and commercial α -Al₂O₃, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/ j.ijhydene.2018.04.224 catalyst exhibited deactivation problems associated with sintering effects. Thus, the presence of structural defects and surfaces rich in oxygen vacancies makes LaAlO₃ perovskite a potential support for application in methane catalytic reforming processes. © 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The high concentrations of CO_2 in the atmosphere resulting from increasing energy consumption and mainly from burning fossil fuels have generated initiatives for the production of renewable energy and clean technologies for CO_2 capture and conversion [1–4]. Dry reforming of methane (DRM) stands out as a technology for the conversion of CH_4 and CO_2 using fuels as the natural gas or renewable gas (biogas) for the production of H_2 and CO, which are the basis of the chemical and energy industries [5,6]. Hydrogen is considered the main energy source of the future and its production has attracted attention in recent years due to the new technologies and materials for its safe storage [7–10], as well as its use in fuel cells [11–13].

The DRM reaction catalyzed by metal supports (Eq. (1)) is endothermic and spontaneous starting from 640 °C [14]. The noble metals (Ru, Rh, Pd, Ir and Pt) exhibit the highest catalytic activities and stabilities for this reaction [15], but their high cost make them unfeasible for large-scale use. Different metals have been proposed as substitutes for noble metals, with special attention focusing on Ni, Fe and Co [5,16,17]. Nickel stands out for its good performance and relatively low cost compared to the noble metals [18,19], but studies indicate that its catalytic stability is still limited due to sintering and the carbon deposits that cover the active sites [20]. Thus, several researches have focused on the development of nickel catalysts and on the optimization of process conditions that eliminate accumulated carbon by inhibiting certain parallel reactions (Eqs. (2) and (3)) [21]. However, recent studies indicate that certain types of carbon may produce positive effects on the catalytic reaction [22], and may increase nickel activity and stability in DRM [23], although it is not yet clear which set of factors lead to this behavior. Once the interactions between metal and support influence the type of carbon, the development and optimization of support synthesis has become a promising strategy [24,25].

Dry reforming of methane :
$$CH_4 + CO_2 \leftrightarrow 2H_2 + 2CO \left(\Delta H^0_{298 \text{ K}} = +247 \text{ kJ mol}^{-1}\right)$$

(1)

Methane decomposition :
$$CH_4 \rightarrow C + 2H_2 (\Delta H^0_{298 \text{ K}})$$

= +75 kJ mol⁻¹) (2)

Boudouard reaction :
$$2CO \leftrightarrow C + CO_2 (\Delta H^0_{298 \text{ K}} = -173 \text{ kJ mol}^{-1})$$
(3)

Several studies have been carried out using different ceramic materials as supports for nickel catalysts [5,18,19,21]. In these studies, special attention has focused on alumina due to its relative abundance and low cost. Alpha (α) and Gamma (γ) phases of Al₂O₃ have been used most frequently because of their differentiated structural and textural properties [26,27]. A critical aspect of the synthesis of Ni/Al₂O₃ catalysts is the control of metal/support interaction, as well as the formation of NiAl₂O₄ secondary phases. Ni²⁺ species dispersed on the surface of γ -Al₂O₃ diffuse readily, forming NiAl₂O₄ after calcination above 600 °C [28]. The formation of NiAl₂O₄ for the DRM reaction should be avoided due to its low reducibility and sintering problems [29,30]. The high thermal and chemical stability of α -Al₂O₃ prevents the formation of NiAl₂O₄ [24] and may favor the production of free NiO on its surface.

For catalytic applications, the properties of the aluminum oxides are improved by adding metals to their structure, forming spinels and perovskites [16,28]. The addition of lanthanum stabilizes the structure and changes the acid-base properties of γ -Al₂O₃ due to the formation of perovskite-type LaAlO₃ [31,32]. The typical synthesis of LaAlO₃ powders is via solid state reaction by mixing the oxides and calcinating at high temperatures (usually above 1500 °C) [33,34]. However, this method has some disadvantages, such as the introduction of impurities during the milling process of the precursors, low chemical homogeneity, high reaction temperatures and large particle size of the resulting powders. In recent years, several low-temperature chemical routes have been used to synthesize homogeneous LaAlO₃ powders, including the solgel [35], Pechini [36], combustion [37], hydrothermal [38], coprecipitation [39], solvothermal [40], combined EDTA-glycine process [41] and sucrose methods [42]. In addition to these methods, the synthesis of monophasic and homogeneous ceramic materials via microwave assisted combustion reaction has been considered simple, fast and inexpensive [43], and was used here to obtain the LaAlO₃ structure.

The stable LaAlO₃, SrTiO₃ and BaTiO₃ perovskites have been evaluated as catalytic supports [35], but dry reforming of methane studies using nickel as active metal and LaAlO₃ as support are reduced in the literature [28,44]. In almost a century of research on DRM [14] barely is known about the phenomenological behavior of the Ni/LaAlO₃ catalyst. In this context, the purpose of the present study was to synthesize and evaluate the LaAlO₃ support in dry reforming of methane using nickel as an active metal. The performance and formation of carbon of the Ni/LaAlO₃ catalyst was systematically compared to the Ni catalyst supported on commercial α -Al₂O₃.

Please cite this article in press as: Figueredo GP, et al., A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO₃ and commercial α -Al₂O₃, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/ j.ijhydene.2018.04.224 Download English Version:

https://daneshyari.com/en/article/7705745

Download Persian Version:

https://daneshyari.com/article/7705745

Daneshyari.com