ARTICLE IN PRESS

international journal of hydrogen energy XXX (2018) 1–10 $\,$

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Solvothermal fabrication of MoS₂ anchored on ZnIn₂S₄ microspheres with boosted photocatalytic hydrogen evolution activity

Chun Liu, Bo Chai^{*}, Chunlei Wang, Juntao Yan, Zhandong Ren

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China

ARTICLE INFO

Article history: Received 9 November 2017 Received in revised form 13 February 2018 Accepted 16 February 2018 Available online xxx

Keywords: MoS₂ cocatalysts Photocatalytic H₂ evolution Charge transfer and separation

ABSTRACT

The MoS₂/ZnIn₂S₄ composites with MoS₂ anchored on the surface of ZnIn₂S₄ microspheres were fabricated by a facile solvothermal method. To clarify the crystal phases, morphologies, chemical compositions, optical properties, and special surface areas of the obtained photocatalysts, the corresponding characterization measurements were performed. The photocatalytic H₂ evolution activities of MoS₂/ZnIn₂S₄ composites were evaluated and compared with using lactic acid as sacrificial reagents. The results showed that integrating MoS₂ with ZnIn₂S₄ could remarkably boost the photocatalytic H₂ evolution performance and the maximum H₂ evolution rate of 201 μ mol h⁻¹ was achieved over 1 wt% MoS₂ loading on the ZnIn₂S₄, corresponding to the apparent quantum efficiency (AQE) about 3.08% at 420 nm monochromatic light. The photoelectrochemical tests and photoluminescence spectra (PL) versified that the efficient charge transfer and separation were achieved over MoS₂/ZnIn₂S₄ composite in contrast with single ZnIn₂S₄, which would significantly benefit the enhancement of photocatalytic H₂ activity. This work provides a desired strategy to design and synthesize the visible-light-response photocatalysts with MoS₂ as cocatalysts to enhance the photocatalytic activity.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

With the increasing of global energy demand and the climatic variation associated with burning fossil fuels, exploring a clean and sustainable energy resource has become an urgent task for humanity. Hydrogen energy is regarded as an ideal energy carrier to substitute fossil fuels in view of its overwhelming superiority. Photocatalytic splitting water for H_2 evolution over semiconductors is an attractive and economic strategy to produce hydrogen energy [1-4]. So far, the researchers have explored and developed a good great deal of photocatalysts to apply into photocatalytic reactions [5-21].

Among these photocatalysts, ternary chalcogenide $ZnIn_2S_4$, a layered structure with band gap energy about 2.0–2.4 eV, has been paid more attention in recent years owing to its excellent visible-light-response, considerable photostability and low toxicity [22–25]. However, the bare $ZnIn_2S_4$ usually undergoes the rapid recombination of photogenerated charge carriers and the large kinetic barrier for photocatalytic H₂ evolution reaction due to deficiency of active sites, which leads to the low photocatalytic activity. To promote the photocatalytic H₂ evolution activity of $ZnIn_2S_4$, a large number of efforts have been made to restrain the recombination of charge carriers and increase the charge carriers separation efficiency, such as loading noble metal platinum (Pt) as cocatalysts or

* Corresponding author.

E-mail address: willycb@163.com (B. Chai).

https://doi.org/10.1016/j.ijhydene.2018.02.116

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Liu C, et al., Solvothermal fabrication of MoS₂ anchored on ZnIn₂S₄ microspheres with boosted photocatalytic hydrogen evolution activity, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.02.116

incorporation with other semiconductors [26–33]. In this case, loading cocatalysts are always considered to be indispensable for acquiring high photocatalytic H₂ evolution activity because they can more effectively trap the photoexcited electrons derived from the semiconductor and lower the reactive overpotential in the hydrogen evolution reaction (HER). Although deposition precious metal Pt on the surface of ZnIn₂S₄ as cocatalysts could apparently enhance the photocatalytic H₂ evolution activity, this method would inevitably increase cost in the practical application. Considering the cost and scarcity of noble metal Pt, it is imperative to seek the lowcost, earth-abundant, low-toxic and high-efficient materials to replace Pt as cocatalysts for enhancing photocatalytic H₂ evolution activity [34–36].

Recently, the layered structure MoS₂ has attracted intense attentions in the photocatalytic H₂ evolution field. Density functional theory calculations deduce that the free energy of atomic hydrogen bonding to MoS₂ is close to that of Pt, which approaches to zero [37]. Furthermore, the excellent photocatalytic H₂ evolution activity of MoS₂ is ascribed to the active edge defect sites [38]. In other words, MoS₂ could be used as effective cocatalysts substitution for Pt [39-55]. For instance, Ye's group has integrated the exfoliated monolayers MoS₂ with commercialized CdS, which exhibits the dramatically enhanced photocatalytic H₂ evolution activities [39]. Zhao et al. have synthesized the MoS₂/Cd_{0.5}Zn_{0.5}S composites by a two-step hydrothermal route. The maximum H₂ evolution rate of 12.30 mmol h^{-1} g⁻¹ is achieved [40]. Yu et al. have adopted the in-situ transformation method to synthesize amorphous $MoS_x/g-C_3N_4$ hybrids with remarkably enhanced photocatalytic H₂ evolution activity [41]. The systems of MoS₂ combining with ZnIn₂S₄ have also been considerably reported in recent years. Meng's group has loaded MoS₂ on the surface of ZnIn₂S₄ by in-situ photo-assisted deposition method. The H₂ evolution rate of 8.047 mmol h^{-1} g⁻¹ is obtained, obviously higher than that of single $ZnIn_2S_4$ [42]. Huang et al. have prepared MoS₂/ZnIn₂S₄ composites with a two-step hydrothermal method, and the maximum photocatalytic H₂ evolution rate is achieved at 0.5 wt% MoS₂ loading [43]. Li's group has obtained MoS₂/ZnIn₂S₄ composites through calcining (NH₄)₂MoS₄ and ZnIn₂S₄ blender under H₂S flow at high temperatures. The photocatalytic H₂ production activity is significantly improved by loading MoS₂ [44]. Tian et al. has constructed the hierarchical MoS₂/ZnIn₂S₄ composite by growing two dimensional (2D) ultra-thin ZnIn₂S₄ nanosheets on the MoS₂ slices, which markedly promote the photocatalytic H₂ evolution performance [45]. Although these reports are about using MoS₂ as cocatalysts for ZnIn₂S₄, exploring and developing the new avenues to anchor MoS₂ on the surface of ZnIn₂S₄ are still deserved to challenge.

Herein, we report the fabrication of MoS_2 anchoring the surface of $ZnIn_2S_4$ microspheres by a facile solvothermal procedure, which is different from previous reports on the formation of $MoS_2/ZnIn_2S_4$ composites. Significantly enhanced photocatalytic H_2 evolution activity is realized by introducing a little amount of MoS_2 as cocatalysts. Moreover, the influence of loading contents of MoS_2 on photocatalytic H_2 evolution activity is investigated and compared in detail. The tentative mechanism of improved photocatalytic activity is also proposed. We hope that this work may provide a new insight to construct of non-noble metal photocatalysts for $\rm H_2$ generation.

Experimental

Material preparation

All chemicals are analytical grade reagents and are purchased from Sinopharm Chemical Reagent Co., China, without further purification. Deionized water is used for all experiments. ZnIn₂S₄ microspheres precursor were prepared according to our previous report [23]. Typically, 1.0 mmol Zn(NO₃)₂·6H₂O and 2.0 mmol In(NO₃)₃·4.5H₂O were dissolved in 70 mL deionized water, and then the pH value of solution was adjusted to 1.0 by adding 1 mol L⁻¹ hydrochloric acid. Next, 10 mmol thioacetamide (TAA) was added into the above solution with stirring. After stirring for 30 min at ambient temperature, the mixture was transferred into a 100 mL Teflon-lined stainless steel autoclave and maintained at 160 °C for 12 h in an electric oven. After the autoclave was cooled down to room temperature, the light yellow products were collected by centrifugation, washed respectively three times using deionized water and ethanol, and dried at 60 °C for 12 h.

MoS₂/ZnIn₂S₄ Composites were fabricated by a solvothermal method. A typical procedure as follows: 0.2 g as-obtained ZnIn₂S₄ microspheres were dispersed into 25 mL N-N'-dimethyl formamide (DMF) and H₂O mixed solvents (volume ratio 2:1) by ultrasound treatment for 30 min. Then 0.0022 g $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ and 0.0041 g thiourea were respectively added into the above suspension. After stirring another 30 min, the suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave and maintained at 200 °C for 24 h. The resultant products with theoretical mass ratio of 1 wt% MoS₂ were collected and washed with deionized water and ethanol for several times, and dried at 60 °C for 12 h. For optimizing the loading amount of MoS₂, a series of MoS₂/ ZnIn₂S₄ composites with MoS₂ theoretical mass ratios (0.5 wt %-20 wt%) were prepared by varying the adding amounts of $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ and thiourea. The pristine MoS_2 sample was prepared by the same procedure except for adding ZnIn₂S₄ precursor. For comparison, the 1 wt% Pt loaded ZnIn₂S₄ sample via light-assistance reduction method was as reference.

Material characterization

The crystal phases were detected by powder X-ray diffraction (XRD) with a Shimadzu XRD-7000 diffractometer with CuK α irradiation at a setting of 40 kV and 30 mA. The morphology and energy dispersive X-ray spectrometer (EDS) were obtained on a JSM-7100F field emission scanning electronic microscope (FESEM) and a JEOL JEM 2100F high-resolution transmission electronic microscope (HRTEM). The X-ray photoelectron spectra (XPS) were carried out on a VG Multilab 2000 with Al $K\alpha$ source operating at 300 W. Raman spectra were measured using a Jobin Yvon LabRAM HR800 spectrometer. The UV–vis diffuse reflectance absorption spectra (UV-DRS) were recorded by a Purkinje General TU-1901 spectrophotometer using BaSO₄ as reference. The Brunauer-Emmett-Teller (BET)

Please cite this article in press as: Liu C, et al., Solvothermal fabrication of MoS₂ anchored on ZnIn₂S₄ microspheres with boosted photocatalytic hydrogen evolution activity, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.02.116

Download English Version:

https://daneshyari.com/en/article/7706765

Download Persian Version:

https://daneshyari.com/article/7706765

Daneshyari.com