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a b s t r a c t

In this contribution, an enhancement of the numerical simulation methods for cohesive
crack propagation within the finite element framework is introduced. Motivated by some
fundamental drawbacks of the standard procedure, which is characterised by an initial
implementation of cohesive surfaces, a novel algorithmic approach is presented which
allows an adaptive incorporation of the cohesive elements depending on a crack growth
criterion for structures with low crack growth rates. A new adaptive modification of the
nodal coordinates and element boundaries on basis of the anticipated crack propagation
direction defined by failure criteria enables furthermore the representation of arbitrary
crack patterns. Following a detailed description of implementation and formulation
aspects, the applicability of different fracture criteria with respect to a reliable prediction
of the crack growth direction is investigated. Exemplary computations show the capabili-
ties of the proposed methods in relation to conventional approaches and in comparison
with experimental results.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The discrete crack model on basis of cohesive finite elements dates back to investigations on steel sheets by Dugdale [1]
and theoretical considerations on an atomistic scale by Barenblatt [2]. The development of an appropriate numerical incor-
poration of cohesive zones into the finite element method started with investigations of a concrete bending beam with sym-
metric boundary conditions by Hillerborg et al. [3] who used a staggered substitution of the symmetric supports with crack
opening displacement related equilibrium forces to simulate the localised failure of the structure. The first introduction of an
adapted finite element formulation with coincident nodal points in the initial configuration can be found in the work of Nee-
dleman [4]. He also stated the common representation of the cohesive constitutive relations between the strength of the
cohesive phase T0 and the relative displacement of the traction free crack faces d0 in terms of a traction separation law. Some
further relevant aspects of finite element formulations of the cohesive crack tip model were provided by Tvergaard [5] who
investigated fibre reinforced composites. His modification of Needleman’s polynomial shaped traction separation law by a
dimensionless parameter
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led to a model which is capable to consider both normal and tangential separation modes dN and dT, respectively. The param-
eter D accounts for the interface damage by considering no damage at the initial state, i.e. D = 0, and full damage at complete
decohesion (D = 1). Taking furthermore into account that the crack opening process has to be irreversible, Tvergaard pro-
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posed a formulation with D = Dmax for the unloading state ð _D < 0Þ. He considered additionally a specific formulation for neg-
ative normal separations, i.e. in case of interpenetration of cohesive surfaces, and for the situation after complete failure by
applying a contact and friction law.

Despite these contributions, the application of cohesive surfaces within the finite element method is still a subject of
intensive research, regarding the method itself or its application for discrete crack propagation. The strong interest in the
cohesive element model can be attributed to the following key feature: In contrast to smeared approaches, which use con-
tinuum elements and a softening material formulation, the cohesive model provides a mesh independent framework to

Nomenclature

Operators
h�i McCauly bracket
_� derivation with respect to timeR
� integration

Indices
0 initial value
c critical value
n, N normal components
t, T tangential components

Fracture mechanics
E Young’s modulus
Eeff effective stiffness
ft tensile strength
G energy release rate
Gc fracture toughness
Cn

eff value of the failure criterion at node n
Ccrit critical value of the failure criterion
As fracture surface area

Cohesive material
C cohesive fracture energy
C0 work of separation
T0 maximum traction value, strength of the cohesive surface
T traction vector
TN, TT normal and tangential traction components
Teff effective traction
d separation vector, displacement jump vector
dN, dT normal and tangential separation components
d0 maximum separation value, relative displacement of traction free surfaces
dN0, dT0 normal and tangential components of d0

D damage parameter, interaction criterion
b relation between tangential and normal strength of the material
K0 initial stiffness of the initially elastic traction separation law
Cc interface
lc cohesive length

Finite element method
ne number of finite elements
n1 number of degrees of freedom before insertion of cohesive elements
n2 number of degrees of freedom after insertion of cohesive elements
he cohesive element length
K element stiffness matrix
u displacement vector
N matrix of shape functions
F nodal forces
r stress tensor
X element domain
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