

Available online at [www.sciencedirect.com](www.sciencedirect.com/science/journal/03603199)

ScienceDirect

journal homepage: <www.elsevier.com/locate/he>

Photoautotrophic hydrogen production by Chlorella pyrenoidosa without sulfur-deprivation

Jun-Zhi Liu ^{a,b}, Ya-Ming Ge ^{b,*}, Song-Yang Xia ^{b,**}, Jing-Ya Sun ^a, Jun Mu ^a

a College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China ^b Innovation & Application Institute (IAI), Zhejiang Ocean University, Zhoushan 316022, China

article info

Article history: Received 3 August 2015 Received in revised form 27 March 2016 Accepted 29 March 2016 Available online 20 April 2016

Keywords:

Photoautotrophic Hydrogen production Chlorella pyrenoidosa Sulfur-deprivation Photosystem II

ABSTRACT

In this study, a photoautotrophic hydrogen production of Chlorella pyrenoidosa was presented, with NaHCO₃ (10 mM) instead of organic carbon and DCMU addition (10 μ M) instead of sulfur-deprivation. The results showed that the algal $O₂$ evolution was significantly inhibited by DCMU, and the earlier it was added the more serious the inhibition was. Overall, when DCMU was added within 9 h after illumination, the relative O_2 concentrations could be regarded as anaerobic \langle <6%). Comparatively, the algal H_2 photoproduction was also influenced by DCMU addition time, but with opposite trend to the O_2 evolution. In summary, the highest H_2 production occurred when DCMU was injected at 9 h, being fourfold of that in sulfur-deprived TAP medium (93.86 mL \mathtt{L}^{-1} vs 23.12 mL \mathtt{L}^{-1}). Further study suggested that the higher H_2 productivity might be mainly due to a relatively higher PSII photochemical activity.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

 $H₂$ photoproduction by microalgae using sunlight and water presents tremendous potential for obtaining an alternate source of clean and sustainable energy $[1-3]$ $[1-3]$ $[1-3]$. In green algae, $H₂$ is generated by hydrogenase which obtains electrons mainly from water photolysis by photosystem II (PSII) [\[4\].](#page--1-0) However, during the water photolysis, $O₂$ is also generated to which, as commonly known, the algal hydrogenase is highly sensitive [\[5\].](#page--1-0) For instance, the hydrogenase of Chlamydomonas reinhardtii was reported to be irreversibly deactivated when environmental $O₂$ partial pressure was higher than 2.8% $[6,7]$. To inhibit O₂ evolution in water photolysis and obtain an anoxic condition for hydrogenase reaction, a sulfur-deprivation method was firstly reported by Melis et al. $[8]$ in which significant volumes of $H₂$ was accumulated. Thereafter, the sulfur-deprivation method was widely used in the following researches on algal H_2 photoproduction [\[1,5\]](#page--1-0).

Besides sulfur-deprivation, exogenic organic carbon sources (e.g. acetate, glucose) was also commonly used for algal H_2 production, which were supposed to be benefit for hydrogenase action by consuming O_2 and/or providing electrons $[9-12]$ $[9-12]$ $[9-12]$. However, when using exogenic organic carbon for microalgal H_2 production, there exist two problems: rapid contamination of heterotrophic microorganisms and expensive cost for obtaining such organic carbon [\[10,13,14\]](#page--1-0). Notably, Fouchard et al. [\[10\]](#page--1-0) found that supplement with HCO₃ instead of acetate in sulfur-deprived Tris-acetate-phosphate (TAP) medium stimulated starch accumulation and subsequent H_2 production of C. reinhardtii 137c. However, when using

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: $+86$ 580 2262589; fax: $+86$ 580 2262063.

^{**} Corresponding author. Tel.: $+86$ 580 2262589; fax: $+86$ 580 2262063.

E-mail addresses: geyaming@126.com (Y.-M. Ge), xiasongyang@sohu.com (S.-Y. Xia). <http://dx.doi.org/10.1016/j.ijhydene.2016.03.191>

inorganic carbon instead of organic carbon, PSII should be more strongly inhibited to maintain anoxia so as to produce microalgal H_2 .

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) has been often used for O_2 evolution inhibition [\[4,7,10\]](#page--1-0). Therefore, it has been found to be able to improve microalgal H_2 production in several reports [\[14,15\].](#page--1-0) However, those reports were mostly using organic carbon and sulfur-deprived medium. Little is known for whether it could work in algal photoautotrophic H_2 production without sulfur deprivation.

In this study, photoautotrophic H_2 production of Chlorella pyrenoidosa using inorganic carbon was investigated, in which O2 evolution was inhibited by DCMU addition instead of sulfur deprivation. To obtain a proper anoxic condition for algal hydrogenase reaction of C. pyrenoidosa, DCMU was added at different illumination time. Besides algal H_2 productivity and $O₂$ evolution, chlorophyll and starch content in the $H₂$ photoproduction system was also monitored and discussed by comparing the photoautotrophic H_2 production system with normal sulfur-deprived TAP system. Finally, the algal PSII activity was observed to further understand the possible mechanism.

Materials and methods

Alga strain and pre-culture

The alga strain of C. pyrenoidosa was obtained from the Culture Collection of Algae, Institute of Hydrobiology, Chinese Academy of Sciences. And the algal cells were pre-incubated in TAP medium containing 2.0 g L^{-1} sodium acetate (28 °C, continuous light of 180 $\upmu \mathrm{E\ m}^{-2} \mathrm{\ s}^{-1}$). Medium pH was adjusted to 7.0 before autoclaving.

Experimental design

To study whether the algal strain could photoautotrophically grow, algal cells were firstly autotrophically cultivated using photobioreactor referred to Ge et al. [\[16\]](#page--1-0). Standard TAP medium containing 2.0 g L^{-1} sodium acetate was prepared as control. Then an autotrophic medium was prepared similar to the TAP medium but using NaHCO₃ (10 mM) to replace acetate and sodium acetate. This autotrophic medium was abbreviated as TCP medium. All media were adjusted to pH 7.0 and autoclaved at 121 $^{\circ} \textsf{C}$ for 15 min. After that, the media were respectively added into the photobioreactors and randomly placed in a room with constant temperature of 28 °C under continuous cool white florescent light (light intensity 180 \pm 10 µE m⁻² s⁻¹).

To produce H_2 , algal cells of C. pyrenoidosa in logarithmic expected time were collected and washed twice with autoclaved sulfur-deprived TAP (TAP-S, control) or TCP medium, then resuspended in anaerobic bottles with 75 mL corresponding autoclaved TAP-S or TCP medium (20 mg Chl \mathtt{L}^{-1}). The anaerobic bottle was purged with N_2 for 10 min, then sealed and placed under darkness for 24 h, followed by a continuous illumination (180 \pm 10 µE m⁻² s⁻¹) at 28 °C. To obtain anoxic condition for algal H_2 production, DCMU (10 μ M) was injected at different time after illumination.

During the experiment, algal H_2 productivity and O_2 evolution were monitored. To better understand the possible mechanisms, other parameters which are closely related to algal H_2 production were also investigated, including chlorophyll content, starch content, as well as PSII photochemical activity.

Gas measurement

 H_2 and O_2 levels in headspace of the culture were gas chromatographically measured. The gas chromatograph (SP6890, Lunan, China) was equipped with a thermal conductivity detector, and a 2 m \times 2 mm (inside diameter) molecular sieve stainless-steel column while helium was used as the carrier gas. Injector, detector and column temperatures were kept at 60 °C, 90 °C and 90 °C, respectively. H_2 production was expressed as value of accumulated H_2 per liter of culture medium. O_2 concentration was expressed as percentage of total gas volume.

Starch and chlorophyll measurement

Algal cell pellets for starch quantification were obtained by centrifugation (5000 \times g, 5 min, 4 °C) and stained with a modified iodine solution according to Jeffrey et al.'s [\[17\]](#page--1-0) method. The cell pellets were resuspended in 500 μ L of 80% calcium nitrate solution, and the mixture was boiled for 25 min to dissolve starch. Then 500 μ L of double-distilled water was supplemented into the mixture, and the mixture was re-centrifuged (5000 \times g, 5 min, 4 °C). Afterwards, 700 µL of the supernatant were mixed with 2 mL of double-distilled water and 300 μ L of potassium iodine solution containing 0.35% (w/v) potassium iodine and 0.15% (w/v) iodine. Finally, algal starch content in the supernatant was spectrophotometrically measured at wavelengths of 580 nm.

For chlorophyll measurement, a known volume of the algal suspension was sonicated (1000 w, 10 min) in ice bath, and then centrifugally collected (5000 \times g, 5 min, 4 °C). All the collected cells were extracted in 90% (v/v) acetone solution repeatedly till the cellular residue turned colorless, and the cellular residue was removed by centrifugation (12,000 \times g, 5 min, 4 \degree C). Finally, chlorophyll content in the pooled extract was spectrophotometrically measured and the algal chloro-phyll content was quantified according to Jeffrey et al.'s [\[17\]](#page--1-0) method.

PSII photochemical activity measurement

PSII photochemical activity was indicated by the maximum PSII quantum yield (Fv/Fm) which was measured using a Dual-PAM-100 measuring system. The fluorescence parameters are defined as follows: F_0 , the initial level of chlorophyll fluorescence, which was determined in the measuring cuvette after 5 min of incubation in the dark; Fm, maximum chlorophyll fluorescence, which was determined using pulses (0.5 s) of red light (5000 µmol m^{-2} s⁻¹); Fv, variable chlorophyll fluorescence, $Fv = Fm-F_0$.

Download English Version:

<https://daneshyari.com/en/article/7710746>

Download Persian Version:

<https://daneshyari.com/article/7710746>

[Daneshyari.com](https://daneshyari.com)