ARTICLE IN PRESS

international journal of hydrogen energy XXX (2016) 1–9

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Hydrogen storage properties and mechanisms of a Mg(BH₄)₂·2NH₃-NaAlH₄ combination system

You Li^a, Yongfeng Liu^{a,b,*}, Xin Zhang^a, Yaxiong Yang^a, Mingxia Gao^a, Hongge Pan^a

^a State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China ^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 28 October 2015 Received in revised form 14 December 2015 Accepted 14 December 2015 Available online xxx

Keywords: Hydrogen storage Borohydrides Ammoniates Alanates Dehydrogenation

ABSTRACT

The Mg(BH₄)₂·2NH₃–xNaAlH₄ (x = 0–4) combination systems were prepared by ball milling, and the reversible hydrogen storage behavior and its mechanisms were investigated and discussed. Combining NaAlH₄ with Mg(BH₄)₂·2NH₃ significantly reduces the operating dehydrogenation temperatures and effectively suppresses the emission of NH₃ by-products. The dehydrogenation onset temperature of the Mg(BH₄)₂·2NH₃–2NaAlH₄ system is lowered to ca. 70 °C, which is much lower than the onset temperatures of either Mg(BH₄)₂·2NH₃ or NaAlH₄. In addition, ammonia emission from Mg(BH₄)₂·2NH₃ is thoroughly suppressed by the addition of NaAlH₄, leading to approximately 11.3 wt% hydrogen released upon heating to 570 °C. Further investigations revealed that at the initial heating stage, Mg(BH₄)₂·2NH₃ first reacts with NaAlH₄ to produce NaBH₄, Al₃Mg₂, Mg, Al_{0.95}Mg_{0.05}, BN, Na and AlN along with the release of hydrogen. Further increasing the operation temperature gives rise to a chemical reaction between NaBH₄, AlN and Mg that liberates all of the hydrogen and yields the resultant products of MgAlB₄, BN, Na and Al₃Mg₂. The dehydrogenated products can take up ~3.5 wt% of hydrogen at 450 °C and 100 bar of hydrogen pressure, exhibiting a partial reversibility for hydrogen storage.

Copyright ${\odot}$ 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen is a lightweight, highly abundant and environmentally benign product; therefore, it has attracted much attention as an alternative energy source [1]. The search for safe, highly efficient and economical hydrogen-storage technologies is one of the most challenging issues in the implementation of hydrogen fuel cell technologies [2–5]. Over the past few decades, considerable efforts have focused on storing H_2 in solid-state materials such as metal hydrides, alanates, borohydrides, imides/amides, ammonia boranes and amidoboranes due to their safe operating pressures and high hydrogen capacity [6–11].

Light-weight metal borohydrides $M(BH_4)_n$ have attracted great interest as one of the most promising hydrogen storage materials due to their high gravimetric and volumetric hydrogen capacities [12–15]. For instance, magnesium

* Corresponding author. Tel./fax: +86 571 87952615.

0360-3199/Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Li Y, et al., Hydrogen storage properties and mechanisms of a Mg(BH₄)₂·2NH₃–NaAlH₄ combination system, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2015.12.036

E-mail address: mselyf@zju.edu.cn (Y. Liu).

http://dx.doi.org/10.1016/j.ijhydene.2015.12.036

borohydride (Mg(BH₄)₂) possesses a theoretical gravimetric capacity of 14.9 wt% and a volumetric capacity of 112 kg/m³ with a favorable desorption enthalpy change of -39 kJ/mol of H₂ [16], which allows for hydrogen desorption near room temperature. These characteristics make Mg(BH₄)₂ very competitive for mobile hydrogen storage applications. However, the material's hydrogen desorption kinetics are relatively sluggish, and the majority of hydrogen desorption from $Mg(BH_4)_2$ occurs at temperatures higher than 250 °C, which is currently too high for practical applications in mobile power systems [15]. Numerous efforts have been devoted to addressing the problematic kinetics for hydrogen desorption from $Mg(BH_4)_2$ to make it feasible as a practical hydrogen storage material, including catalyst doping [17,18], nanoconfinement [19] and creating reactive composites [20-25]. It was reported that adding 5 mol% TiF₃ and ScCl₃ produced a five-fold increase in the dehydrogenation reaction rate of Mg(BH₄)₂ [26]. The dehydrogenation onset temperature for Mg(BH₄)₂ was reduced to 125 °C by co-doping with TiCl₃ and NbCl₅ [17]. The resulting TiO₂-containing Mg(BH₄)₂ achieved 2.4 wt% of cycled hydrogen capacity at 271 °C under ~140 bar of H₂ pressure [27], which is superior to that of a pristine sample. The temperature for major hydrogen desorption from a Mg(BH₄)₂/carbon composite was decreased to 160 °C [28]. A $Mg(BH_4)_2$ -2NaAlH₄ combination system was able to release 9.1 wt% hydrogen initiated at 101 °C [24]. Moreover, in a composite material with $Mg(BH_4)_2$ infiltrated into a highly ordered mesoporous carbon (CMK-3) containing dispersed Ni nanoparticles, the hydrogen desorption temperature dramatically decreased, and the release rate was significantly higher [19]. A 3 Mg(BH₄)₂-3LiBH₄-4FGi composite began to release hydrogen at 125.7 °C, and hydrogen desorption amounted to over 8.0 wt% [29].

Alternatively, forming NH₃ coordination compounds (i.e., ammoniates) is also an effective strategy to reduce the dehydrogenation temperature of Mg(BH₄)₂ due to the presence of dihydrogen bonds [30-36]. A series of ammoniates have been synthesized for Mg(BH₄)₂, including Mg(BH₄)₂·6NH₃, Mg(BH₄)₂·3NH₃, Mg(BH₄)₂·2NH₃ and Mg(BH₄)₂·NH₃. Among these ammoniates, Mg(BH₄)₂·2NH₃ was demonstrated to start releasing ~13.1 wt% hydrogen while heating up to 400 °C [37]. Nevertheless, a 150 °C dehydrogenation temperature is still too high for practical applications. More importantly, the hydrogen that released from Mg(BH₄)₂·2NH₃ was contaminated with ammonia. Reducing the dehydrogenation temperature of Mg(BH₄)₂·2NH₃ and depressing the evolution of ammonia as by-product have been investigated. For example, we recently reduced the dehydrogenation onset temperature of Mg(BH₄)₂·2NH₃ to 70 °C by partially substituting fluorine for hydrogen [38]. Additionally, hydrogen desorption from a $Mg(BH_4)_2 \cdot 2NH_3 - MgH_2$ combination system initiated at 70 °C, and the total dehydrogenation amount was approximately 13.9 wt% [39]. More recently, Leng et al. reported that by combining Mg(BH₄)₂·2NH₃ with LiAlH₄, the hydrogen desorption temperature was reduced to 100 °C with superior ammonia suppression due to a combination reaction between the [Al-H] and [N-H] groups [40]. Therefore, metal hydrides or alanates may have potential to further improve the hydrogen storage properties of Mg(BH₄)₂·2NH₃.

In this work, a reactive composite with several compositions of $Mg(BH_4)_2 \cdot 2NH_3 - xNaAlH_4$ were prepared and investigated. The combination systems showed significantly improved hydrogen storage properties compared to pristine $Mg(BH_4)_2 \cdot 2NH_3$. The $Mg(BH_4)_2 \cdot 2NH_3 - 2NaAlH_4$ combination released ~11.3 wt% hydrogen initiated at 70 °C. More importantly, the dehydrogenated $Mg(BH_4)_2 \cdot 2NH_3 - 2NaAlH_4$ absorbed approximately 3.5 wt% of hydrogen at 100 bar hydrogen at 450 °C, exhibiting partial reversibility for hydrogen storage.

Experimental section

The commercial chemicals NaAlH₄ (ACROS, 93%), MgCl₂ (Alfa Aesar, 99%) and NaBH₄ (Alfa Aesar, 98%) were used as received without further purification. Mg(BH₄)₂ was synthesized in our laboratory through a metathesis reaction between NaBH₄ and MgCl₂ in diethyl ether as reported previously [41]. Mg(BH₄)₂·6NH₃ was prepared by ball milling Mg(BH₄)₂ under 7 bar of NH₃ atmosphere. Mg(BH₄)₂·2NH₃ was obtained by ball milling a mixture of this Mg(BH₄)₂·6NH₃ with Mg(BH₄)₂ in a molar ratio of 1:2 according to the following reaction [38].

 $Mg(BH_4)_2 \cdot 6NH_3 + 2Mg(BH_4)_2 \rightarrow 3Mg(BH_4)_2 \cdot 2NH_3$ (1)

The Mg(BH₄)₂·2NH₃-xNaAlH₄ (x = 1–4) composites were prepared on a planetary ball mill (QM-3SP4) rotating at 200 rpm for 1 h. The ball-to-sample weight ratio was approximately 60:1. To compare dehydrogenation/hydrogenation properties, pure NaAlH₄ and Mg(BH₄)₂·2NH₃ were also treated under the same conditions. The milling was set to rotate for 0.2 h in one direction, followed by a 0.1 h pause before reversing direction to inhibit powder conglutination and heat accumulation in the jar. All sample handling was conducted in a glove box (MBRAUN, Germany) filled with pure argon. H₂O and O₂ concentrations were kept below 1 ppm to prevent contamination from moisture and oxygen.

The thermal decomposition properties of the samples were analyzed by temperature-programmed desorption (TPD), differential scanning calorimetry (DSC) and volumetric release techniques. TPD measurements were conducted using a homemade apparatus equipped with an online mass spectrometer (MS). Approximately 40 mg of each sample was loaded into a homemade tube reactor. Pure Ar was used as the carrier gas. The temperature was gradually elevated from room temperature to 600 °C at a heating rate of 2 °C/min. DSC analyses were performed on a Netzsch 200 F3 unit. Approximately 2 mg of each sample was loaded and heated at a rate of 2 °C/min under Ar flow. In the volumetric release/soak experiment, a homemade Sieverts-type apparatus was employed, and ~60 mg of each sample was loaded into a stainless steel reactor inside a glove box, and the reactor was connected to the Sieverts-type system. The sample was heated from room temperature to a desired temperature at an average rate of 2 °C/min for dehydrogenation (initially under vacuum) and 1 °C/min for hydrogenation (under an initial hydrogen pressure of 100 bar). According to the automatically recorded pressures and temperatures, the amount of hydrogen desorbed/absorbed from the samples was calculated by the pressure changes in the reactor using the equation of state.

Download English Version:

https://daneshyari.com/en/article/7712189

Download Persian Version:

https://daneshyari.com/article/7712189

Daneshyari.com