INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2015) 1–10

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Effect of preparation method on Ni₂P/SiO₂ catalytic activity for NaBH₄ methanolysis and phenol hydrodeoxygenation

Kaiqiang Yan ^a, Yunhua Li ^{a,*}, Xing Zhang ^a, Xin Yang ^a, Nuowei Zhang ^a, Jinbao Zheng ^a, Binghui Chen ^a, Kevin J. Smith ^{b,**}

^a Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005, PR China

^b Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada

ARTICLE INFO

Article history: Received 15 April 2015 Received in revised form 24 September 2015 Accepted 26 September 2015 Available online xxx

Keywords: Nickel phosphide (Ni₂P) Sodium borohydride (NaBH₄) Methanolysis Hydrogen Phenol Hydrodeoxygenation

ABSTRACT

A comparative study has been performed on Ni₂P/SiO₂ catalysts prepared by: (i) conventional temperature-programmed reduction (TPR) of calcined precursors following wet impregnation of the support, (ii) TPR of a sol–gel prepared NiO/SiO₂ precursor impregnated with NH₄H₂PO₄ and (iii) a solution-phase reaction in the presence of the SiO₂ support using Ni(acac)₂ and trioctylphosphine. Catalyst characterization shows that the Ni₂P prepared by the solution-phase method has a uniform particle size (7.5 ± 0.8 nm) and H species can easily transfer from the nickel sites to the SiO₂ support on this catalyst. These properties result in a high NaBH₄ methanolysis to hydrogen activity. In contrast, the sol–gel prepared Ni₂P/SiO₂ has a relatively high catalytic activity for phenol hydrodeoxygenation due to a higher concentration of Ni³⁺ species that act as Lewis acid sites and metal sites, and a higher Ni₂P crystallinity.

Copyright @ 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen is a clean, renewable energy carrier that can address increasing concerns related to the depletion of fossil fuels and their environmental impact. The safety and efficiency of hydrogen storage and supply plays a critical role in the practical application of hydrogen as an energy carrier [1]. Among the methods of hydrogen supply, NaBH₄ reaction with methanol to yield hydrogen (Eq. (1)), with high volumetric and gravimetric hydrogen capacity, has been extensively studied because the reaction activation is lower than that of NaBH₄ hydrolysis and the system can be operated at a rather low temperature (<0 °C) benefiting from the low freezing point of methanol [2–4]. Up to now, catalysts studied for NaBH₄

0360-3199/Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Yan K, et al., Effect of preparation method on Ni₂P/SiO₂ catalytic activity for NaBH₄ methanolysis and phenol hydrodeoxygenation, International Journal of Hydrogen Energy (2015), http://dx.doi.org/10.1016/j.ijhydene.2015.09.145

^{*} Corresponding author. Tel./fax: +86 0592 2185203.

^{**} Corresponding author.

E-mail addresses: yunhuali@xmu.edu.cn (Y. Li), kjs@mail.ubc.ca (K.J. Smith). http://dx.doi.org/10.1016/j.ijhydene.2015.09.145

methanolysis include Ru/Al_2O_3, Fe–B nanoparticles, Co/TiO_2 and Co/Al_2O_3.

$$NaBH_4 + 4CH_3OH \rightarrow 4H_2 \uparrow + NaB(OCH_3)_4$$
(1)

Transition metal phosphides are a class of catalysts that have shown potential in hydrotreating reactions such as hydrodeoxygenation (HDO) [5], hydrodesulphurization (HDS) [6] and hydrodenitrogenation (HDN) [7]. These catalysts have also recently been shown to catalyze higher alcohol synthesis from synthesis gas [8–10] and the hydrogen evolution reaction [11]. In hydrotreating, including HDO, Ni₂P has been identified as having the highest activity among the metal phosphides due to appropriate electronic and acid properties [6,12,13]. However, the preparation of uniform nanoparticles of Ni₂P remains a challenge [14].

The conventional preparation method of Ni₂P is temperature-programmed reduction (TPR) of metal phosphate precursors. However, high reduction temperature (up to 1000 K) leads to agglomeration or sintering of the Ni₂P particles and minimal control of Ni₂P particle size [15]. To address this issue, solution-based strategies have been developed that involve the reaction of metal salts with phosphines to yield almost monodispersed nanoparticles. Muthuswamy et al. [16] studied the effects of the reductant oleylamine and the phosphorus source on the morphology of Ni₂P and Savithra et al. [17] reported on the HDS performance of supported Ni₂P prepared by solution-phase reaction. They found that Ni₂P nanoparticles prepared by solution-phase reaction have a weak interaction with the amorphous silica support, resulting in sintering under conditions required to achieve HDS catalysis and, consequently, these catalysts have a low HDS activity. In a second approach, Chen et al. [18] prepared NiO nanoparticles supported on SiO2 by a sol-gel method and following impregnation with NH₄H₂PO₄ and TPR. They synthesized highly dispersed Ni₂P (4.2 nm) that was stable and highly active for hydrodechlorination of chlorobenzene.

In the present study, Ni₂P nanoparticles supported on SiO₂ were synthesized using three methods: (i) conventional temperature-programmed reduction (TPR) of calcined precursors following wet impregnation of the support, (ii) TPR of a sol–gel prepared NiO/SiO₂ precursor impregnated with NH₄H₂PO₄ and (iii) a solution-phase reaction in the presence of the SiO₂ support using Ni(acac)₂ and trioctylphosphine following the method of Muthuswamy et al. [16]. The asprepared samples from the three different methods were characterized to identify differences in their physicochemical properties and their catalytic performance was measured for both NaBH₄ methanolysis and phenol HDO. To the best of the authors' knowledge, NaBH₄ methanolysis using Ni₂P catalysts is reported herein for the first time.

Experimental

Catalyst synthesis

The solution-phase synthesis of the supported Ni_2P catalyst was performed by a one-pot strategy under N_2 atmosphere (99.99%). In a typical preparation, $Ni(acac)_2$ (526 mg, 95%) and

oleylamine (2.0 mL, 80-90%) were added to a 50-mL threenecked flask equipped with a thermometer and a Graham condenser. The mixture was stirred moderately and heated to 393 K at a heating rate of 20 K min^{-1} using a heating mantle. Trioctylphosphine (TOP; 3.6 mL, 97%) and SiO₂ (Sigma--Aldrich, 285 m² g⁻¹, 800 mg) were added to the flask successively and the mixture was continuously stirred at 393 K for 30 min, and then heated to 613 K (with a heating rate of 20 K min⁻¹) and held at this temperature for 2 h. After naturally cooling to room temperature, the obtained dark mixture was washed with a solution of hexane and ethanol (v:v = 1:1), followed by centrifugation at 10, 000 rpm for 3 min. The washing process was repeated three times. The final powder was then washed with ethanol, passivated and dried at 308 K in an O₂/N₂ mixture (1.5 vol.% of O₂) for 3 h. The catalyst obtained was named Ni₂P-TOP.

For comparison, a SiO₂-supported Ni₂P catalyst was prepared by the conventional TPR method. The synthesis process was similar to that described by Sawhill et al. [19] for Ni₂P/SiO₂ catalysts. The catalyst precursor was prepared by an incipient wetness impregnation of the same SiO₂ support used above, with ammonium dihydrogen phosphate (NH₄H₂PO₄) and nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) solution. The impregnated SiO₂ precursor was dried at 393 K and calcined at 823 K (with a heating rate of 5 K min⁻¹) for 4 h. Subsequently, the calcined precursor was reduced in a flow of H₂, while heating from room temperature to 523 K at a heating rate of 10 K min⁻¹ followed by heating from 523 K to 923 K at 1 K min⁻¹ and holding for 3 h. The reduced catalyst was passivated at 308 K in O₂/N₂ mixture (1.5 vol.% of O₂) for 3 h, and was denoted as Ni₂P-TPR.

A modified TPR method was also adopted to synthesize SiO_2 -supported Ni_2P catalyst according to Chen's work [18]. NiO/SiO_2 was prepared by a sol-gel method and calcined to obtain a high dispersion of nickel. Then the NiO/SiO_2 was wet impregnated with ammonium dihydrogen phosphate ($NH_4H_2PO_4$) solution, followed by temperature-programmed reduction and passivation following the same procedure described above for the Ni_2P -TPR preparation. The catalyst obtained was named Ni_2P -sol-gel.

The nominal Ni metal loading of all the three catalysts prepared was 15 wt.%. For the Ni₂P-TOP preparation, an organic layer originating from oleylamine and TOP [11,20], is invariably present on the surface of Ni₂P-TOP, despite several washing steps with hexane and ethanol. The organic layer on the surface of the Ni₂P-TOP can be removed after thermal treatment in Ar flow at 723 K. Thus, Ni₂P-TOP treated in argon atmosphere (99.999%) at 723 K (with a heating rate of 2 K min⁻¹) for 30 min is denoted as Ni₂P-TOP(Ar). Since the passivation layer on the sample surface may have an influence on the catalytic performance, the catalysts were pretreated before catalytic reaction in a H₂/N₂ mixture (10 vol.% of H₂) at 723 K (with a heating rate of 2 K min⁻¹) for 30 min and are denoted as Ni₂P-TOP(H₂), Ni₂P-TPR(H₂), Ni₂P-sol–gel(H₂), respectively.

Catalyst characterization

The BET surface area, pore volume, and mesopore size distribution of the samples were determined from N_2 adsorption/

 $Please cite this article in press as: Yan K, et al., Effect of preparation method on Ni_2P/SiO_2 catalytic activity for NaBH_4 methanolysis and phenol hydrodeoxygenation, International Journal of Hydrogen Energy (2015), http://dx.doi.org/10.1016/j.ijhydene.2015.09.145$

Download English Version:

https://daneshyari.com/en/article/7713260

Download Persian Version:

https://daneshyari.com/article/7713260

Daneshyari.com