ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2015) 1–12

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Hydrogen storage properties of LiNH₂—LiH system with MgH₂, CaH₂ and TiH₂ added

G. Amica, P. Arneodo Larochette, F.C. Gennari*

Centro Atómico Bariloche (CNEA) — Instituto Balseiro (Universidad Nacional de Cuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bustillo 9500, R8402AGP S.C. de Bariloche, Río Negro, Argentina

ARTICLE INFO

Article history: Received 13 March 2015 Received in revised form 8 May 2015 Accepted 15 May 2015 Available online xxx

Keywords: Lithium amide Ball milling Calcium hydride Magnesium hydride Kinetics

ABSTRACT

The addition of different metal hydrides to Li–N–H system offers a possible way to modify its thermodynamic properties and/or the dehydrogenation/hydrogenation kinetics. In this paper we report the hydrogen storage properties of LiNH₂–LiH system with MH₂ added (M = Mg, Ca, Ti) and clarify the chemical interactions occurring during hydrogen cycling. Detailed structural investigations reveal that during heating under hydrogen, MH₂ (M = Mg, Ca) reacts with LiNH₂ to form Li₂Mg(NH)₂ and 2CaNH–Ca(NH₂)₂ solid solution, with simultaneous hydrogen release. Formation of the Li₂NH–CaNH mixture after dehydrogenation of the LiNH₂–LiH with CaH₂ added is proved by XRPD and FTIR, providing a new reversible pathway for hydrogen storage in the Li–Ca–N–H system. Notable improvement in the dehydrogenation temperature and kinetics was observed for LiNH₂–LiH system with CaH₂ and MgH₂ added, without clear effects in the case of TiH₂. The kinetic analysis reveals that dehydrogenation process is diffusion-controlled and the beneficial effect of MgH₂ and CaH₂ is due to the enhancement of Li⁺ mobility.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen storage remains one of the most challenging technological barriers to the advancement of hydrogen fuel cell technologies for mobile applications. Although there are a variety of ways to store hydrogen, solid-state hydrogen storage provides improved volumetric energy densities in comparison with compressed gas or liquid hydrogen, with a combination of safe and efficient conditions at moderate pressure and temperatures. Recently, much attention has been focused on complex metal hydrides storage systems, such as borohydrides and amides [1-11]. In particular, the lithium amide (LiNH₂)-lithium hydride (LiH) system has been proposed as a possible candidate [7], because it offers relatively high gravimetric storage capacity (6.5 wt.% of theoretical value) and reversibility in the hydrogen storage:

$$LiNH_{2(s)} + LiH_{(s)} \leftrightarrow Li_2NH_{(s)} + H_{2(g)}$$
(1)

However, the temperatures required for the dehydrogention/rehydrogenation of reaction (1) are still too high for the application of Li-N-H system as commercial hydrogen

http://dx.doi.org/10.1016/j.ijhydene.2015.05.091

Please cite this article in press as: Amica G, et al., Hydrogen storage properties of LiNH₂–LiH system with MgH₂, CaH₂ and TiH₂ added, International Journal of Hydrogen Energy (2015), http://dx.doi.org/10.1016/j.ijhydene.2015.05.091

^{*} Corresponding author. Instituto Balseiro (UNCuyo), Centro Atómico Bariloche (CNEA) and Consejo Nacional de Investigaciones Cinetíficas y Técnicas (CONICET), Av. Bustillo 9500, R8402AGP S. C. de Bariloche, Argentina. Tel.: +54 294 4445118; fax: +54 294 4445190. E-mail address: gennari@cab.cnea.gov.ar (F.C. Gennari).

^{0360-3199/}Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

storage material. One strategy to modify the thermodynamic properties with positive effects on the kinetics is the development of new ternary metal-N-H systems, such as Li-Mg-N-H [12-15], Li-Al-N-H [16-18], Li-Ca-N-H [19-22] and others as Li-Ti-N-H [10,23-25], which were investigated on their interaction with hydrogen. In fact, different improvements in the dehydrogenation rates and/or in the thermodynamic parameters were observed by substituting LiH with MgH₂. Luo et al. [12] studied the dehydrogenation of a mixture of 2LiNH2-MgH2 and showed that LiNH₂ reacts with MgH₂ to form Li₂NH, MgNH, and H₂ as products, with better hydrogen storage performance than Li-N-H system. The decomposition enthalpy for the 2LiNH₂–MgH₂ mixture was found to be 34 kJ/mol of H₂, which means a relevant reduction compared to 51 kJ/mol for the LiNH₂-LiH mixture [13]. Initially, it was thought that Li₂NH and MgNH constitute the products of dehydrogenation of the 2LiNH₂-MgH₂ mixture. Additional studies demonstrate that the dehydrogenated sample contain Li₂Mg(NH)₂ and the rehydrogenated product obtained from Li2Mg(NH)2 is not $2\text{LiNH}_2 + \text{MgH}_2$ but $\text{Mg(NH}_2)_2 + 2\text{LiH}$ [15], as described in:

$$2 \text{ LiNH}_{2(s)} + \text{MgH}_{2(s)} \rightarrow \text{Li}_{2}\text{Mg(NH)}_{2(s)} + 2\text{H}_{2(g)} \leftrightarrow \text{Mg(NH}_{2)}_{2(s)} + 2 \text{ LiH}_{(s)}$$
(2)

Xiong et al. [8] and Wu [21] reported that hydrogenation/ dehydrogenation behavior and final products of the interaction in Li–Ca–N–H and Li–Mg–N–H systems are comparable. For example, Li₂Ca(NH)₂ was synthesized by dehydrogenation of LiNH₂–2CaH₂, in similar way than Li₂Mg(NH)₂ is obtained by the reaction (2). However, dehydrogenation from the 2LiNH₂–CaH₂ mixture starts at about 70 °C, while for LiNH₂–MgH₂ and LiNH₂–LiH composites hydrogen release was observed over 100 °C and 150 °C, respectively [8]. Although 2LiNH₂–CaH₂ mixture (~4.5 wt.%) has lower hydrogen capacity than LiNH₂–MgH₂ (~5.5 wt.%), it was demonstrated that the mechanism of the reversibility involves the formation of CaNH + Li₂NH in the hydrogenated state [21]:

$$\begin{array}{l} 2 \text{ LiNH}_{2(s)} + \text{CaH}_{2 \ (s)} \rightarrow \text{CaNH}_{(s)} + \text{Li}_{2}\text{NH}_{(s)} + 2\text{H}_{2(g)} \leftrightarrow \\ \text{Ca(NH}_{2)}_{2 \ (s)} + 2\text{LiH}_{(s)} \end{array} \tag{3}$$

The appearance of Li₂Ca(NH)₂ is only possible after the previous formation of CaNH and Li₂NH during dehydrogenation at high temperature (>300 °C). Further work using different LiNH₂–CaH₂ molar ratios (2:1, 3:1 and 4:1) [22] demonstrates that reaction involved in the reversibility depends on the starting molar ratio. In the case of 4:1 molar ratio, the LiNH₂–CaH₂ mixture transforms to a new compound with a composition of Li₄CaN₄H₆ during dehydrogenation, while rehydrogenation gives LiNH₂, LiH and the solid solution CaNH–Ca(NH₂)₂ [22]. So far, the hydrogen storage reversibility pathway for Li–Ca–N–H system shows different compounds depending on local composition changes and temperature/ pressure conditions [19,20,22].

In the case of Ti metal as possible doping of $LiNH_2$, diverse Ti-containing additives were reported as the effective catalysts in the Li–N–H system [23–25]. Excellent reversibility was shown in the presence of TiCl₃, but the hydrogen storage capacity was reduced [23]. In addition, the effect of Ti compounds with different sizes was also examined [24]. The studies revealed that nanoparticles of Ti or TiO₂ were effective in reducing the desorption temperature. However, micronsized Ti and TiO₂ did not show a good catalytic effect. Therefore, it was suggested that the particle size of the precursor may be an important factor to act as an effective catalyst. Studies using X-ray absorption spectroscopy measurements [26] indicate that the Ti atoms in the Ti compounds have a common electronic state, in particular suggests the formation of TiCl₃.5NH₃. Nevertheless, any of these studies includes the use of TiH₂ in enough amounts to form the LiNH₂-2TiH₂ mixture. A possible reaction between LiNH2-2TiH2 involves the formation of Ti₂N and LiH as solid products during dehydrogenation [27]. Using density functional theory calculations, the enthalpy of this reaction was estimated to be low, but this needs to be investigated experimentally.

Motivated by these previous investigations, a comparative study of the hydrogen storage properties of $LiNH_2-LiH$ system with MH_2 added (M = Mg, Ca and Ti) was performed using constant amount of additive and same experimental conditions. In this work, different interactions between MH_2 and $LiNH_2$ were identified, which determine the nature of the reversible reaction. The analysis was extended in order to examine the effect of additive on the thermodynamics and kinetics of the Li–N–H system. A proposal of the reaction pathway for each system is further discussed.

Experimental

Synthesis of the composites

The starting materials were commercial LiNH₂ (Aldrich, 95%), LiH (Fluka, 95%), TiH₂ (Aldrich, 98%), CaH₂ (Merck, 95%) and MgH₂ (Aldrich, 98%), which are referred as LN, L, Ti, Ca and Mg, respectively. All samples were handled in an MBraun Unilab glove argon-filled glove box, with oxygen and moisture levels lower than 1 ppm. For all studies, high purity hydrogen (Linde, 99.999%) and argon (Linde, 99.999%) were used.

The sample preparation was carried out by mechanical milling of the following mixtures: LiNH₂-1.6LiH (LNL), LiNH₂-1.6LiH-0.2TiH₂ (LNLTi), LiNH₂-1.6LiH-0.2CaH₂ (LNLCa) and LiNH₂-1.6LiH-0.2MgH₂ (LNLMg). The amount of LiH was added in excess to minimize the emission of NH₃ [18]. The mechanical milling was performed using a sequence of 15 min milling and 10 min pause in a planetary ball mill at 500 rpm (Fritsch Pulverisette 6) under 0.1 MPa of argon. About 1.5 g of mixture was placed in an 80 mL stainless steel mill chamber with 5 stainless steel balls of 14.5 mm of diameter. To avoid NH₃ emission, the mill chamber was opened after 1 h, 2 h and 3 h to mix the powders and eliminate possible dead zones. All samples were ball milled for 5 h with a ball to powder ratio of 53:1.

Characterization of the composites

Structural, textural, thermal and hydrogen storage properties of the as-milled and as-cycled samples were studied using differential scanning calorimetry (DSC, TA 2910 calorimeter), powder X-ray diffraction (XRPD, Philips PW 1710/01

 $Please cite this article in press as: Amica G, et al., Hydrogen storage properties of LiNH_2-LiH system with MgH_2, CaH_2 and TiH_2 added, International Journal of Hydrogen Energy (2015), http://dx.doi.org/10.1016/j.ijhydene.2015.05.091$

Download English Version:

https://daneshyari.com/en/article/7715233

Download Persian Version:

https://daneshyari.com/article/7715233

Daneshyari.com