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Abstract

Consider a lamellar inhomogeneity embedded in an unbounded isotropic elastic medium. When the elastic moduli of
the lamellar inhomogeneity are zero it is a crack, if its elastic moduli are infinite it is an anticrack, and when its elastic
moduli are finite it is called a quasicrack. Based on the Eshelby’s equivalent inclusion method (EIM), the present paper
develops a unified approach for determination of the exact closed-form expressions for modes I, II, and III stress intensity
factors (SIFs) at the tips of lamellar inhomogeneities under a remote applied polynomial loading.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the context of the present study, a lamellar inhomogeneity is deduced from an ellipsoidal inhomogeneity
by letting one of its principal axes vanish. The aim of this paper is to determine modes I, II, and III stress
intensity factors (SIFs) pertinent to a general class of lamellar shapes embedded in an infinite isotropic elastic
medium under polynomial far-field applied loading in a unified manner.

For a through finding on the SIFs of cracks in the literature, up to the year 2000, one should refer to the
handbooks of Murakami [1]and Tada et al. [2]. A close scrutiny of the literature reveals that, except for a very
few specific cases, the exact solution to the modes I, II, and III SIFs of three-dimensional penny shape and
elliptic cracks under polynomial loading at infinity has not been obtained. Most of the closed-form solutions
to the SIF pertinent to a penny shape crack in an infinite isotropic elastic body are devoted to at most linear
far-field loading, [2-4]. The more general geometry of an elliptic crack under a uniform far-field tension was
considered by Irwin [5] employing the stress function theory. Shibuya [6] also used stress function to study the
elliptic crack under a linear far-field loading and evaluated only the mode I SIF within 1% accuracy [1]. As far
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as slit-like cracks are concerned Isida [7] has obtained the closed-form expression only for the mode I SIF at
the tip of a two-dimensional crack under a polynomial loading at infinity by stress function method [1].

It is now more than three decades that scientists are concerned with the fiber-matrix force transfer in fiber
reinforced composite materials. A well taken approach is to model the long thin fibers by line (lamellar) inho-
mogeneities [8—14], such that the fiber cross sectional area vanishes. In applying the proposed approach to real
composites, if the microgeometries of the reinforcements are such that they can be approximated as limiting
cases of an ellipsoid, reasonable estimation by the present method is expected. For example, often a short fiber
can be represented by a prolate ellipsoid having the same aspect ratio [15]. Similarly, a long fiber can be mod-
eled by an elliptic cylinder.

Rigid inhomogeneities have important applications in materials science. Nowadays, the excellent techno-
logical applications of carbon nanofiber reinforced polymer composites have attracted the attentions of indus-
try and numerous scientists. These composites are advantageous for their high tensile modulus, strength, and
promising electrical and thermal properties. Vapor grown carbon nanofiber (VGCF) which is a new class of
carbon fiber can be fabricated at high quantities and low cost. The fiber may have a diameter of about 150 nm
and length of 10-20 pm [16]. The modulus of carbon nanofiber is normally in the range of 100-600 GPa and
sometimes even higher, whereas the modulus of some polymers is usually 2-5 GPa [17]. Thus, for certain pur-
poses the carbon nanofibers in the carbon nanofiber reinforced polymer composites may be considered as rigid
fibers or anticracks in the context of the present study. A brief examination of typical properties of fibers and
matrices which are now extensively used in composite materials reveals that, many types of fibers such as SiC,
Al,O3, high modulus (HM) carbon, etc. (in the forms of platelets, whiskers, powder, etc.) have high stiffness in
comparison to thermosets and thermoplastics matrices such as epoxy resins, polyesters, and polypropylene.
Elastic deformation of these composites with different fiber architecture (long-fiber, short-fiber, ribbon-like
fiber, etc.) can be drawn assuming the linear-elastic stress—strain behavior [15]. Moreover, non-metallic and
very hard embrittlements in some metallic materials and alloys can be idealized as rigid imperfections relative
to the matrix and linear-elastic analysis has proved to be useful in such situations, Hasebe et al. [18,19]. Same
authors have considered an anticrack as a model for a thin rigid plate embedded in an elastic body. Atkinson
[8], in an effort to determine the elastic fields of a metallic strain measuring device embedded in a rubber
matrix, proposed ribbon-like inhomogeneity model. In this, Atkinson examines both cases of a rigid ribbon
inhomogeneity (anticrack) and an elastic ribbon inhomogeneity (quasicrack). A considerable amount of liter-
ature is devoted to the two-dimensional problem of anticrack embedded in an isotropic elastic materials under
uniform far-field loading, Hasebe et al. [18,19], Dundurs and Markenscoff [20], Markenscoff and Ni [21],
Hurtado et al. [22], and Homentcovschi and Dascalu [23]. However, to the best of the authors’ knowledge,
the three-dimensional cases of penny shape and elliptic anticracks under far-field polynomial loading have
not been addressed in the literature. Also, to date, very little attention has been paid to the determination
of the stress field of quasicracks. The existing theories devoted to this topic are tailored for the simpler
two-dimensional and uniform loading conditions and have very limited ranges of applicability. For example,
Hurtado et al. [22] who address quasicracks, consider the in-plane and out-of-plane cases under a uniform far-
field loading.

Depending on the dimension of the problem, loading condition, and the type of lamellar inhomogeneity:
crack, quasicrack, or anticrack, various types of boundary value problems are encountered and a unified
approach using the existing mathematical treatments is not possible, so that researchers have employed differ-
ent methods. For the cases of in-plane and out-of-plane strain, and under a uniform applied far-field loading,
Hurtado et al. [22] show that the lamellar inhomogeneity can equivalently be replaced by a suitable distribu-
tion of dislocations, which can be obtained by using the concept of surface dislocation density. Also, Homent-
covschi and Dascalu [23] use the Muskhelishvili’s complex potentials to study the two-dimensional problems
of lamellar inhomogeneity in unbounded isotropic elastic materials. The deficiency of the two latter
approaches is the difficulty in their extension, not only to three-dimensional lamellar inhomogeneity, but also
for remote polynomial loading. On the other hand, the beauty of the Eshelby’s [24-26] result is that there is an
exact correspondence between the far-field loading and the form of the distribution of homogenizing eigen-
strain inside the equivalent inclusion. This powerful theory implies many dramatic results. In the context of
the present study, as one of its abundant applications, it enables us to find the exact SIFs for the two- and
three-dimensional lamellar inhomogeneities due to a far-field applied polynomial loading.
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