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ABSTRACT

The present study is a follow-up of a previous one on a detailed kinetic modeling of the
homogeneous decomposition of SO3—H,0 vapor in the sulfur—iodine cycle for hydrogen
production. In this paper, the activity and stability of complex metal oxides Ce,Cu;_xO5 5
prepared by a sol—gel method with x values ranging within 0.2—0.8 were studied for SO3
—H,0 vapor decomposition having a feed rate of space velocity of 5000 ml g * h™* at 727
—877 °C. Sample Ceg gCup»0,-900 showed even higher activity than Pt catalyst at >800 °C
and good stability at 850 °C for 60 h of continuous operation. The physicochemical prop-
erties and redox process of CuO/CeO, catalysts for SO; decomposition were characterized
by temperature programmed reduction, transmission electron microscopy, X-ray diffrac-
tion, and X-ray photoelectron spectroscopy analyses. A redox mechanism was then pro-
posed based on the characterization results and our previous homogeneous kinetic model.
In this mechanism, both ceria-support and copper oxide clusters were reduced, oxidized,
and interacted with each other. The overall effect was that CuO/CeO, catalyst promoted
the reaction of SO3 + O < SO, + O,, which was the limiting step of SO; decomposition, by
providing reactive oxygen.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
Introduction SOZ + 12 + 2H20—>2HI -+ HzSO4(2O — 1OOOC) (a)
catalyst
Water is a promising candidate raw material for large-scale H,50, %50, +0.50, + H,0(700 — 900°C) (b)
hydrogen production, which can help solve the energy prob-
lem and reduce greenhouse-gas emissions [1,2]. The sul- oSSt I, + H,(200 — 500°C) (©)

fur—iodine (SI) cycle with good thermal efficiency and
operability is receiving increased attention among the large
number of thermochemical water-splitting processes [3]. This
SI cycle consists of three steps:

Reaction (a), called the Bunsen reaction, is an exothermic
reaction process in liquid phase with an excess of water and
iodine that produces two aqueous non-miscible acidic phases,
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i.e,, the HI, and sulfuric acids. Reaction (b) is sulfuric acid
decomposition that produces O, and SO, which is a raw
material for the Bunsen reaction. Reaction (c) is hydrogen
iodine decomposition that produces H, and I, which is also a
raw material for the Bunsen reaction. Reaction (b) consists of
reactions (d) and (e):

H;504(9) = H20(g) + S03(9)(500°C) (d)
S05(9) —S0,(g) + 1/20,(g)(>700°C) (©

Among the three reactions, H,SO, is easily converted to
S03; and H,0 [4], but the temperature needed for reaction (e) is
very high. Thus, reaction (e) becomes the focus of many
research, such as sulfur trioxide electrolysis [4] and the cata-
lytic decomposition of SO; using nuclear energy [5].

A catalyst is needed because the direct dissociation rate
and conversion ratio of SOz is very low at <900 °C [6]. Catalysts
can be mainly divided into Pt-based catalysts, transition metal
oxides, and complex metal oxides based on the results of
previous research. Pt-based catalysts have high activity
especially with the carrier of SiC [7—9] even at <750 °C. How-
ever, their stabilities still need to be improved in long-period
tests [10,11]. Single metal oxides such as Fe,0; and CuO can
still have high activities with good support [12]. Complex
metal oxides appear to be some of the most promising cata-
lysts for SO3 decomposition because their uniquely high ac-
tivities even exceed those of Pt-supported catalysts in some
cases [9,13—15]. Only a few studies have focused on the
mechanism underlying SO; decomposition, although metal
oxide catalysis is regarded as the repeated reduc-
tion—oxidation of metal oxides [16]. Systematic research on
the mechanism of catalytic decomposition of SO; from ho-
mogeneous SO; perspective splitting is lacking.

Copper oxide on CeO, is known as an efficient catalyst in
multiple processes, such as the stabilization and dispersion of
noble metals [17], water—gas shift reaction [18,19], SO,
adsorption [20], and oxidation of CO or methanol [21-23].
Cerium oxides or cerium-based catalysts have high structural
oxygen storage and release capacity (OSC) [22,24—27] which is
critical to the repeated reduction—oxidation of metal oxides.
Nonstoichiometric nanocrystalline CuO/CeO, has remarkably
higher activity and stability than the corresponding precipi-
tated ultrafine material [24], and these features can be attrib-
uted to the formation of a solid solution and dispersion by
chemisorption [25,28]. Highly dispersed copper oxide mate-
rials are stabilized on the active sites of relatively large
nanocrystallines CeO, by chemisorption [25,26]. Based on
previous CO oxidation research, the incorporation of Cu®*
introduces a structural defect (oxygen vacancy) into the CeO,
lattice and leads to the formation of a solid solution [28]. Thus,
the promoted mobility of active oxygen substantially de-
creases the temperatures related to the reduction or oxidation
of copper oxide and cerium oxide [28,29]. Previous research on
CO oxidation has some references to SO; decomposition.
However, research on the catalytic activity of nanocrystalline
CuO/Ce0, for SO; decomposition especially at >700 °C has not
yet been reported.

Our previous studies have shown that SO; homogeneous
decomposition encompasses two important elementary

reactions SO; < SO, + O and SOz + O < SO, + 0,, which
involve the release and consumption of active oxygen [6].
CuO/CeO, catalysts prepared by sol—gel methods were used
for SO; decomposition in this study. The effects of calcination
temperature and Ce/Cu ratio on SO; decomposition ratio were
experimentally studied. The physicochemical properties of
CuO/Ce0, catalysts for SO;—H,0 vapor were characterized by
TPR, TEM, XRD, and XPS. The mechanism of SO; catalytic
decomposition by CuO/CeO, catalysts was then proposed ac-
cording to the characterization results of the aforementioned
methods.

Experimental
Catalyst preparation

The Ce/Cu (atomic ratio) values of CuO/CeO, catalysts syn-
thesized by sol—gel method were 20 mol%, 50 mol%, and
80 mol%. The nitrates Ce(NO3);—6H,0 and Cu(NOs),-3H,0
were mixed and stirred with the complex agent sucrose and
the dispersant glycol at 90 °C in an aqueous solution until a
spongy gel remained. The molar ratio of sucrose and glycol to
the sum of nitrate Ce(NO3);—6H,0 and Cu(NOs),-3H,0 was
10:1:5. The gel was then allowed to dry at 110 °C for 24 h,
carbonized at 400 °C for 4 h in N, atmosphere, and calcined at
900 °C for 3 h or 700 °C for 10 h. Finally, the gel was cooled to
room temperature in a furnace.

Characterizations

TPR was carried out for unused and used samples on an
AutoChem II 2920 Automated Catalyst Characterization Sys-
tem. Exactly 0.04 g of pure copper oxide or complex oxides
CuO/Ce0, was used. The samples were heated under flowing
5% H,/Ar (30 ml/min) from room temperature to 900 °C (10 °C/
min). The samples were characterized by TEM using a Tecnai
G2 F20 S-TWIN. The powders were ground and dispersed onto
molybdenum grids. Powder XRD measurements were recor-
ded with a D/max 2550PC diffractometer. A standard sample
holder was used, and measurements were taken within the
10°—80° 26 range with a step size of 0.02° and step time of
0.02 s. XPS was carried out on an Escalab 250Xi system with Mg
Ko radiation under UHV (5 x 10 8 Pa), calibrated internally
using the carbon deposit C;s with binding energy (BE) of
284.6 eV.

Activity measurement

Sulfuric acid solution with 92.5% concentration was pumped
into furnace 1 using a peristaltic pump (BT00-50M) under ni-
trogen flow at a rate of 60 ml/min controlled with a mass
flowmeter, in which preheating, vaporization, and SO; gen-
eration occurred at 450 °C (Fig. 1). Catalyst (1 g) was loaded in a
quartz tube-type reactor with a length of 30 cm and a diameter
of 1.3 cm in furnace 2, where the catalytic decomposition of
SO; was performed at 727—877 °C and 1 atm. The exhaust
gases went through a spiral condenser, gas-washing bottles, a
gas dryer, and an oxygen analyzer. The oxygen concentration
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