

Catalytic decomposition of sulfuric acid over $CuO/CeO₂$ in the sulfur-iodine cycle for hydrogen production

Yanwei Zhang*, Hui Yang, Junhu Zhou, Zhihua Wang, Jianzhong Liu,
Kefa Cen

سور
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

article info

Article history: Received 2 September 2014 Received in revised form 9 December 2014 Accepted 14 December 2014 Available online 9 January 2015

Keywords: Sulfur-iodine cycle H2SO4 decomposition CuO/CeO₂ catalyst Vacancy defects Redox mechanism Hydrogen production

abstract

The present study is a follow-up of a previous one on a detailed kinetic modeling of the homogeneous decomposition of SO_3-H_2O vapor in the sulfur-iodine cycle for hydrogen production. In this paper, the activity and stability of complex metal oxides $Ce_xCu_{1-x}O_{2-\delta}$ prepared by a sol-gel method with x values ranging within 0.2-0.8 were studied for SO_3 $-H_2O$ vapor decomposition having a feed rate of space velocity of 5000 ml g^{-1} h⁻¹ at 727 -877 °C. Sample Ce_{0.8}Cu_{0.2}O₂-900 showed even higher activity than Pt catalyst at >800 °C and good stability at 850 \degree C for 60 h of continuous operation. The physicochemical properties and redox process of $CuO/CeO₂$ catalysts for $SO₃$ decomposition were characterized by temperature programmed reduction, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses. A redox mechanism was then proposed based on the characterization results and our previous homogeneous kinetic model. In this mechanism, both ceria-support and copper oxide clusters were reduced, oxidized, and interacted with each other. The overall effect was that $CuO/CeO₂$ catalyst promoted the reaction of $SO_3 + O \leftrightarrow SO_2 + O_2$, which was the limiting step of SO_3 decomposition, by providing reactive oxygen.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Water is a promising candidate raw material for large-scale hydrogen production, which can help solve the energy problem and reduce greenhouse-gas emissions [\[1,2\]](#page--1-0). The sulfur-iodine (SI) cycle with good thermal efficiency and operability is receiving increased attention among the large number of thermochemical water-splitting processes [\[3\].](#page--1-0) This SI cycle consists of three steps:

$$
SO_2 + I_2 + 2H_2O \to 2HI + H_2SO_4(2O - 100^{\circ}C)
$$
 (a)

CrossMark

$$
SO_2 + I_2 + 2H_2O \rightarrow 2HI + H_2SO_4(2O - 100^{\circ}C)
$$
 (a)
\n
$$
H_2SO_4 \xrightarrow{\text{catalyst}} SO_2 + 0.5O_2 + H_2O(700 - 900^{\circ}C)
$$
 (b)
\n
$$
2HI \xrightarrow{\text{catalyst}} I_2 + H_2(200 - 500^{\circ}C)
$$
 (c)

$$
2HI \xrightarrow{\text{catalyst}} I_2 + H_2(200 - 500^{\circ} \text{C})
$$
 (c)

Reaction (a), called the Bunsen reaction, is an exothermic reaction process in liquid phase with an excess of water and iodine that produces two aqueous non-miscible acidic phases,

^{*} Corresponding author. Tel.: $+86$ 571 87952040; fax: $+86$ 57187951616. E-mail address: zhangyw@zju.edu.cn (Y. Zhang).

<http://dx.doi.org/10.1016/j.ijhydene.2014.12.048>

^{0360-3199/}Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

i.e., the HI_x and sulfuric acids. [Reaction \(b\)](#page-0-0) is sulfuric acid decomposition that produces O_2 and SO_2 , which is a raw material for the Bunsen reaction. [Reaction \(c\)](#page-0-0) is hydrogen iodine decomposition that produces H_2 and I_2 , which is also a raw material for the Bunsen reaction. [Reaction \(b\)](#page-0-0) consists of reactions (d) and (e):

 $H_2SO_4(g) \rightarrow H_2O(g) + SO_3(g)(500^{\circ}C)$ $\begin{pmatrix} \mathsf{C} \end{pmatrix}$ (d)

$$
SO_3(g) \to SO_2(g) + 1/2O_2(g) (> 700^{\circ}C)
$$
 (e)

Among the three reactions, H_2SO_4 is easily converted to SO_3 and H_2O [\[4\],](#page--1-0) but the temperature needed for reaction (e) is very high. Thus, reaction (e) becomes the focus of many research, such as sulfur trioxide electrolysis [\[4\]](#page--1-0) and the catalytic decomposition of $SO₃$ using nuclear energy [\[5\].](#page--1-0)

A catalyst is needed because the direct dissociation rate and conversion ratio of SO₃ is very low at <900 °C $[6]$. Catalysts can be mainly divided into Pt-based catalysts, transition metal oxides, and complex metal oxides based on the results of previous research. Pt-based catalysts have high activity especially with the carrier of SiC $[7-9]$ $[7-9]$ $[7-9]$ even at <750 °C. However, their stabilities still need to be improved in long-period tests $[10,11]$. Single metal oxides such as $Fe₂O₃$ and CuO can still have high activities with good support [\[12\].](#page--1-0) Complex metal oxides appear to be some of the most promising catalysts for $SO₃$ decomposition because their uniquely high activities even exceed those of Pt-supported catalysts in some cases $[9,13-15]$ $[9,13-15]$ $[9,13-15]$. Only a few studies have focused on the mechanism underlying $SO₃$ decomposition, although metal oxide catalysis is regarded as the repeated reduction-oxidation of metal oxides $[16]$. Systematic research on the mechanism of catalytic decomposition of $SO₃$ from homogeneous $SO₃$ perspective splitting is lacking.

Copper oxide on $Co₂$ is known as an efficient catalyst in multiple processes, such as the stabilization and dispersion of noble metals $[17]$, water-gas shift reaction $[18,19]$, SO₂ adsorption $[20]$, and oxidation of CO or methanol $[21-23]$ $[21-23]$ $[21-23]$. Cerium oxides or cerium-based catalysts have high structural oxygen storage and release capacity (OSC) $[22,24-27]$ $[22,24-27]$ $[22,24-27]$ which is critical to the repeated reduction-oxidation of metal oxides. Nonstoichiometric nanocrystalline CuO/CeO₂ has remarkably higher activity and stability than the corresponding precipitated ultrafine material [\[24\]](#page--1-0), and these features can be attributed to the formation of a solid solution and dispersion by chemisorption [\[25,28\]](#page--1-0). Highly dispersed copper oxide materials are stabilized on the active sites of relatively large nanocrystallines $CeO₂$ by chemisorption [\[25,26\].](#page--1-0) Based on previous CO oxidation research, the incorporation of Cu^{2+} introduces a structural defect (oxygen vacancy) into the CeO₂ lattice and leads to the formation of a solid solution [\[28\]](#page--1-0). Thus, the promoted mobility of active oxygen substantially decreases the temperatures related to the reduction or oxidation of copper oxide and cerium oxide [\[28,29\].](#page--1-0) Previous research on CO oxidation has some references to $SO₃$ decomposition. However, research on the catalytic activity of nanocrystalline CuO/CeO₂ for SO₃ decomposition especially at >700 °C has not yet been reported.

Our previous studies have shown that $SO₃$ homogeneous decomposition encompasses two important elementary reactions $SO_3 \leftrightarrow SO_2 + O$ and $SO_3 + O \leftrightarrow SO_2 + O_2$, which involve the release and consumption of active oxygen [\[6\]](#page--1-0). $CuO/CeO₂$ catalysts prepared by sol-gel methods were used for SO₃ decomposition in this study. The effects of calcination temperature and Ce/Cu ratio on $SO₃$ decomposition ratio were experimentally studied. The physicochemical properties of $CuO/CeO₂$ catalysts for $SO₃-H₂O$ vapor were characterized by TPR, TEM, XRD, and XPS. The mechanism of $SO₃$ catalytic decomposition by $CuO/CeO₂$ catalysts was then proposed according to the characterization results of the aforementioned methods.

Experimental

Catalyst preparation

The Ce/Cu (atomic ratio) values of $CuO/CeO₂$ catalysts synthesized by sol-gel method were 20 mol%, 50 mol%, and 80 mol%. The nitrates Ce(NO₃)₃-6H₂O and Cu(NO₃)₂.3H₂O were mixed and stirred with the complex agent sucrose and the dispersant glycol at 90 $^{\circ}$ C in an aqueous solution until a spongy gel remained. The molar ratio of sucrose and glycol to the sum of nitrate Ce(NO₃)₃-6H₂O and Cu(NO₃)₂.3H₂O was 10:1:5. The gel was then allowed to dry at 110 \degree C for 24 h, carbonized at 400 °C for 4 h in N_2 atmosphere, and calcined at 900 °C for 3 h or 700 °C for 10 h. Finally, the gel was cooled to room temperature in a furnace.

Characterizations Characterizations

TPR was carried out for unused and used samples on an AutoChem II 2920 Automated Catalyst Characterization System. Exactly 0.04 g of pure copper oxide or complex oxides CuO/CeO2 was used. The samples were heated under flowing 5% H₂/Ar (30 ml/min) from room temperature to 900 °C (10 °C/ min). The samples were characterized by TEM using a Tecnai G2 F20 S-TWIN. The powders were ground and dispersed onto molybdenum grids. Powder XRD measurements were recorded with a D/max 2550PC diffractometer. A standard sample holder was used, and measurements were taken within the $10^{\circ}-80^{\circ}$ 2 θ range with a step size of 0.02 $^{\circ}$ and step time of 0.02 s. XPS was carried out on an Escalab 250Xi system with Mg K α radiation under UHV (5 \times 10⁻⁸ Pa), calibrated internally using the carbon deposit C_{1s} with binding energy (BE) of 284.6 eV.

Activity measurement

Sulfuric acid solution with 92.5% concentration was pumped into furnace 1 using a peristaltic pump (BT00-50M) under nitrogen flow at a rate of 60 ml/min controlled with a mass flowmeter, in which preheating, vaporization, and $SO₃$ gen-eration occurred at 450 °C [\(Fig. 1\)](#page--1-0). Catalyst (1 g) was loaded in a quartz tube-type reactor with a length of 30 cm and a diameter of 1.3 cm in furnace 2, where the catalytic decomposition of SO₃ was performed at 727-877 °C and 1 atm. The exhaust gases went through a spiral condenser, gas-washing bottles, a gas dryer, and an oxygen analyzer. The oxygen concentration

Download English Version:

<https://daneshyari.com/en/article/7716278>

Download Persian Version:

<https://daneshyari.com/article/7716278>

[Daneshyari.com](https://daneshyari.com/)