
ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2014) 1-9

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Computational investigation of hydrogen storage on scandium—acetylene system

Li-Juan Ma, Jianfeng Jia^{*}, Hai-Shun Wu^{*}

School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China

ARTICLE INFO

Article history: Received 22 July 2014 Received in revised form 9 October 2014 Accepted 30 October 2014 Available online xxx

Keywords: Scandium–acetylene system Hydrogen storage Coupled-cluster theory CCSD (T) Kubas interaction Electrostatic interaction

ABSTRACT

The hydrogen storage capacities of synthesized Scandium-Acetylene systems (Sc- η^2 $-(C_2H_2)$ and HC=C-ScH) are tested by using density functional theory (DFT) and the coupled-cluster theory (CCSD (T)) with 6-311++G (3df, 3pd) basis sets. Both the energy profile and natural bond orbital analysis predict that $Sc-\eta^2-C_2H_2$ and $HC\equiv C-ScH$ complexes are promising hydrogen storage materials. The $Sc-\eta^2-(C_2H_2)$ and $HC\equiv C-ScH$ complexes can trap up to six hydrogen molecules, reaching gravimetric uptake capacities as high as 14.56 wt%. Thermo-chemistry calculations indicate two H₂ in Sc $-\eta^2$ -C₂H₂(H₂)₆ and four H_2 in $HC \equiv C-ScH(H_2)_6$ can be readily adsorbed at 77 K and desorbed at 298.15 K under atmospheric pressure, corresponding to the maximal reversible hydrogen storage abilities of 5.37 and 10.20 wt%, respectively. The further comparison between $HC \equiv C$ -ScH(H₂) and HC \equiv C-ScH⁻ (2H) reveals that the charged state of Sc atom has a great influence on the hydrogen adsorption state and adsorption energy. Moreover, dimers may form in case of scandium-acetylene systems. The most stable (C₂H₂Sc)₂ can adsorb ten H₂ molecules, reaching the hydrogen storage capacity of 12.43 wt%. Thermo-chemistry calculations indicate the maximal reversible hydrogen storage capacities of $Sc(C_2H_2)_2$ and $(C_2H_2Sc)_2$ are 7.67 and 7.85 wt%, respectively.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

With the increasing demand of energy and limitations of fossil fuels, viable hydrogen storage materials play an increasingly important role [1–6]. The traditional chemisorption materials (metal hydrides [7]) and physisorption materials (carbonbased nanostructures [8–10] and metal/covalent organic frameworks [11,12]) fail to meet the ultimate targets set by the U. S. Department of Energy (DOE) [13]. Chemisorption is seldom reversible while physisorption cannot achieve high hydrogen contents. Fortunately, the transition metal complex can coordinate multiple hydrogen molecules by the Kubastyped orbital interaction (s or s* orbits of H₂ hybridize with 3d orbits of transition metals) [14–17]. This Kubas interaction, with binding intermediate between physisorption and chemisorption, has been widely employed to make new class of hydrogen storage materials [18–24]. Moreover, a single metallic cation also could adsorb up to six hydrogen molecules by electrostatic interaction [25]. Given the two interactions, many researchers have been trying to make adsorbents by decorating carbon-based nanostructures with transition metal [23,26,27]. Though a number of promising materials have been designed by theoretical studies, there

* Corresponding authors. Tel./fax: +86 357 2052468.

E-mail addresses: jiajf@dns.sxnu.edu.cn (J. Jia), wuhs@mail.sxnu.edu.cn (H.-S. Wu).

http://dx.doi.org/10.1016/j.ijhydene.2014.10.136

0360-3199/Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Ma L-J, et al., Computational investigation of hydrogen storage on scandium-acetylene system, International Journal of Hydrogen Energy (2014), http://dx.doi.org/10.1016/j.ijhydene.2014.10.136

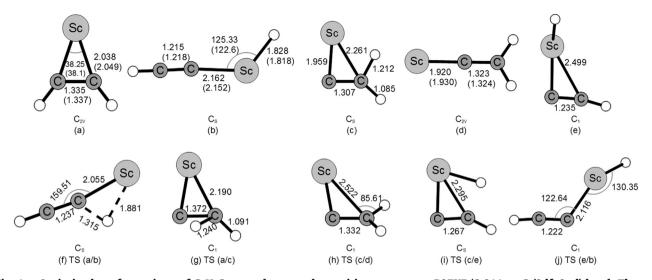


Fig. 1 – Optimized conformations of C_2H_2Sc complexes and transition states at wB97XD/6-311++G (3df, 3pd) level. The values in parentheses are B3LYP results in Ref. [44]. The bond lengths and angles are in Å and degrees. The symmetries are also shown.

were few materials applied experimentally due to the difficulty of synthesis [28,29]. Durgun [24,30] predicted the hydrogen storage capacities of transition-metal-ethylene complexes and shown that $Ti_2-C_2H_4$ adsorbed up to ten hydrogen molecules with the average binding energy of 0.45 eV/H₂. Under this guidance, numerous studies on hydrogen adsorption capacities of organometallic compounds $(TM-C_2H_4 \text{ and } TM-C_nH_n, TM \text{ stands for first transition metals};$ n refers to 1, 2, 3, 4, 5, 6, 8) were carried out theoretically to search for ideal hydrogen storage media [31-41]. As a matter of fact, H_2 uptake capacities of $Ti-C_2H_4$ complex (12 wt%) [42] and titanium benzene complexes (6 wt%) [43] have been observed in experiments. These experimental data were in excellent agreement with theoretical results [30,41]. These meaningful results encourage us to consider some realistic structures such as already synthesized organometallic compounds. So, the challenge is to find a synthesized organometallic compound with positively charged transition metal atom.

The Scandium-Acetylene systems are exactly what we've been trying hard to find due to their excellent performances: (i) Sc has the maximum number of available empty d orbits, namely, more electrons from H_2 can be filled in these orbits. (ii) On the basis of density functional calculations, the charges in the C₂H₂Sc complexes transfer from Sc to the acetylene leaving the Sc atoms in cationic states. (iii) Above all, experiment based on controlled synthesis of $Sc-\eta^2-C_2H_2$ and $HC \equiv C-ScH$ has shown that they are very stable clusters [44]. Previously, computational investigations of hydrogen adsorptions on C₂H₂M (M=Li, Ti, Ni) [32–34] have been reported. C₂H₂Li complex was not suitable for ideal hydrogen storage even at a very low temperature (50 K) [33]; C₂H₂Ni could only adsorb maximum of two H₂ molecules with average binding energy of 1.18 eV/H₂, then the molecules were remained strongly bound to the organometallic complex even at 600 K [34]; Both Ti $-\eta^2$ –(C₂H₂) and HC=C–TiH could adsorb six H₂ molecules below temperatures 315 K and 275 K, respectively [32]. Unfortunately, dimers could form in case of $C_2H_2T_1$ and C_2H_2Ni complexes [32,34], and the hydrogen storage capacities were substantially reduced from 14.06 wt% to 7.56 wt% and from 4.54 wt% to 3.45 wt%, respectively.

The aim of this work is to predict the hydrogen storage capacities of synthesized π and insertion complexes $(Sc-\eta^2-C_2H_2 \text{ and } HC \equiv C-ScH)$ in the gas phase using *ab* initio CCSD (T) calculations to guide potential experiment. Firstly, the experimental observations in Ref. [44] (the observed products in the matrix infrared spectra were $Sc-\eta^2-C_2H_2$ and HC≡C-ScH rather than vinylidene product) have been reconfirmed by theoretical calculation; Secondly, stable structures of adsorbed complexes are displayed and the binding energies are calculated; Moreover, the nature of interactions between H₂ and Sc $-\eta^2$ –(C₂H₂)/HC=C–ScH is profoundly anatomized; Thirdly, the effect of temperature and pressure on the adsorption energies is calculated to estimate the adsorption/desorption temperature at 1 atm and the maximal reversible hydrogen adsorption ability 77–298.15 K. Finally, dimerization is studied. Our results may offer researchers a new strategy for the design of the hydrogen sorbents based on Kubas interaction and electrostatic interaction.

Computational details

All geometries, harmonic vibrational frequencies, zero-point energies (ZPE) and the intrinsic reaction coordinate (IRC) calculations [45,46] were obtained using the range-separated hybrid density functional theory (wB97XD [47]) with the valence double diffuse and polarization function 6-311++G(3df, 3pd) basis sets. The wB97XD functional includes empirical dispersion and long range corrections [47], and it described binding energy between C₂H₂Ti and H₂ molecules well [32]. The calculated bond length and frequency of H₂ were 0.743 Å and 4428 cm⁻¹, which agreed very well with experimental values of 0.741 Å and 4401 cm⁻¹ [48]. The three main vibrational normal modes, ScC₂ stretches (565.1 cm⁻¹ and

Please cite this article in press as: Ma L-J, et al., Computational investigation of hydrogen storage on scandium-acetylene system, International Journal of Hydrogen Energy (2014), http://dx.doi.org/10.1016/j.ijhydene.2014.10.136

Download English Version:

https://daneshyari.com/en/article/7717020

Download Persian Version:

https://daneshyari.com/article/7717020

Daneshyari.com