

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Short Communication

Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter

Sanjay K.S. Patel ^{a,1}, Prasun Kumar ^{a,b}, Sanjeet Mehariya ^{a,1}, Hemant J. Purohit ^c, Jung-Kul Lee ^{d,**}, Vipin C. Kalia ^{a,*}

- ^a Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India
- ^b Department of Biotechnology, University of Pune, Pune 411007, India
- ^c Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India
- ^d Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea

ARTICLE INFO

Article history:
Received 24 April 2014
Received in revised form
14 July 2014
Accepted 16 July 2014
Available online 10 August 2014

Keywords: Bacillus Dark fermentation Enterobacter Hydrogen Klebsiella

ABSTRACT

Defined co-cultures of hydrogen (H_2) producers belonging to Citrobacter, Enterobacter, Klebsiella and Bacillus were used for enhancing the efficiency of biological H_2 production. Out of 11 co-cultures consisting of 2–4 strains, two co-cultures composed of Bacillus cereus EGU43, Enterobacter cloacae HPC123, and Klebsiella sp. HPC793 resulted in H_2 yield up to 3.0 mol mol^{-1} of glucose. Up-scaling of the reactor by 16-fold resulted in a corresponding increase in H_2 production with an actual evolution of 7.44 L of H_2 . It constituted 58.2% of the total biogas. Continuous culture evolution of H_2 by co-cultures (H_2) immobilized on ligno-cellulosic materials resulted in 6.4-fold improvement in H_2 yield compared to free floating bacteria. This synergistic influence of H_2 coreus and H_2 cloacae can offer a better strategy for H_2 production than undefined or mixed cultures. Copyright 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

Introduction

Fossil fuels are used extensively worldwide to conform to the exponentially increasing energy needs. Continued reliance on fossil fuels as primary energy resources is becoming unsustainable due to limited world fuel reserves. Vigorous research initiatives are directed at developing alternative renewable energy resources. Among the diverse available alternative sources, hydrogen (H_2) has been distinguished as an attractive energy carrier due its high energy (122 kJ/g) content and environmentally friendly nature [1–3]. Among

^{*} Corresponding author. Tel.: +91 11 27666156, +91 11 27666157; fax: +91 11 27667471, +91 11 27416489.

^{**} Corresponding author. Tel.: +82 2 450 3505; fax: +82 2 458 3504.
E-mail addresses: jkrhee@konkuk.ac.kr (J.-K. Lee), vckalia@igib.res.in, vc_kalia@yahoo.co.in (V.C. Kalia).

¹ Present address SKSP and SM: Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701. Republic of Korea.

the different methods being explored, biological H2 production (BHP) has gained significant importance due to its production under ambient physiological conditions and identification of many H2 producers [1,4-9]. BHP has been reported under dark-fermentation by pure strains of Bacillus, Citrobacter, Clostridium, Enterobacter and Klebsiella or under the photo-fermentation by Rhodobacter, Rhodopseudomonas, Rhodospirillum, etc. [10-15]. Each microbial strain has limitation towards H2 production under different fermentative conditions. In most cases, lower H2 yields were observed than the theoretically achievable yield of 4 mol mol⁻¹ of hexose [3,13,16]. Attempts are still being made to search for the potential candidates for the H_2 production, which -i) can adapt to a broad range of physiological conditions, including nutrient limitation, ii) can utilize diverse substrates (including biowastes), and iii) have an ability to compete with other microbes present in unsterilized feed on a large scale [1-3]. Altogether these characteristics are important for the economic system of the BHP process. Various mixed cultures have been applied for improving in H2 production, but yields continue to be quite low, in the range of 2.5-3.0 mol mol⁻¹ [13,17-19]. In comparison to pure cultures, co-cultures could be more suitable for synergistic effects on H2 yields. Research is required for complementing the abilities of different strains to develop robust co-cultures to achieve the goal of the sustainable BHP system [20]. The most readily proposed mechanism is genetic engineering. However, we can expand the range of biosynthetic and metabolic pathways by using cocultures of different organisms. H2 evolution in microbes operates through the involvement of enzymes: nitrogenase, and hydrogenases [5]. Fermentative organisms such as Enterobacter catalyze pyruvate to H₂ via formate and protons, with the help of enzyme formate dehydrogenase and hydrogenase. Nitrogenase uses Mg²⁺, ATP and low-potential electrons derived from ferredoxin or flavodoxin and reduces a number of substrates. However, in the absence of these substrates it reduces protons to H2. In Bacillus, H2 production perhaps occurs through formate dehydrogenase than via hydrogenase [2,5]. More recent works have revealed the presence of hydrogenase genes in Bacillus spp [2]. In the present study, we can expect a complementation of two different H₂ production pathways to be operative. A major limitation of BHP, is the sensitivity of the H₂ producing enzymes to oxygen (O₂) [1]. In fact, syntrophic associations involving different species of Bacillus and Clostridium, Bacillus proved to be an effective consumer of oxygen and consequently in improving fermentative H₂ production process [21,22]. Facultative anaerobe, Enterobacter aerogenes helped Clostridium to produce H2 effectively by consuming O2 present in the reactor [1]. In other studies, combinations of Bacillus coagulans, Citrobacter and Enterobacter cloacae lead to enhanced H2 yields because of the effective hydrolytic enzyme activities of E. cloacae and B. coagulans [11].

In the present study, we have evaluated the complementarities of the $\rm H_2$ production potential of Bacillus, Citrobacter, Enterobacter and Klebsiella strains isolated from various habitats. A significant enhancement of $\rm H_2$ yields was observed with co-cultures. High $\rm H_2$ yields were quite stable under batch culture as well as on up-scaling. Continuous culture production of $\rm H_2$ using immobilized co-cultures on ligno-cellulosic

biowaste materials has been also demonstrated. The metabolic activities of these strains may be complemented to use biowaste materials as feed to increase the efficiency of the H₂ production process.

Material and methods

Organisms and growth conditions

Bacterial strains used in this study were isolated previously in our laboratories (Table A1, http://www.ncbi.nlm.nih.gov/). All the strains were maintained on nutrient agar at pH 7.0, containing salt (0.5% NaCl) and grown on HiMedia nutrient broth at 37 °C at 200 rpm for 16–20 h [13,15].

Batch culture hydrogen production

By pure cultures

Initial screening of bacteria belonging to genera: Citrobacter, Enterobacter and Klebsiella for $\rm H_2$ production was done under batch-culture conditions. 250 mL of minimal medium (M-9) supplemented with 1% (w v⁻¹) glucose in 300 mL BOD bottles were inoculated with different strains at the rate of 10 μ g cell protein mL⁻¹, at pH 7.0, and incubated at 37 °C. The evolved gases were collected by water displacement method and residual glucose was measured by DNSA method [13,15].

Four strains with the highest H_2 producing abilities in their respective genus were tested further at different glucose concentrations (0.5–2.0% w v⁻¹) on: i) M-9, ii) GM-2 (Yeast extract – 1.0 g L⁻¹, $K_2HPO_4 - 1.0$ g L⁻¹ and MgSO₄.7 $H_2O - 0.5$ g L⁻¹), and iii) YMG (Yeast extract 10.0 g L⁻¹ and Malt extract 10.0 g L⁻¹) [13]. The values are based on three sets of observations.

By co-cultures

Citrobacter sp. HPC1212 (AY948270), E. cloacae HPC123 (DQ129709), Klebsiella sp. HPC793 (AY838383) and Bacillus cereus EGU43 were used for preparing 11 co-cultures: 2MC1–2MC6 (2 strains each), 3MC1–3MC4 (3 strains each) and 4MC1 (4 strains) (Table 2). These co-cultures were prepared by mixing bacterial cultures in equal proportions, amounting to a final cell protein concentration of 10 μ g mL⁻¹ feed. Their H₂ producing abilities were tested on: i) M-9, ii) GM-2, and iii) YMG media, containing 0.5% glucose (w v⁻¹).

Up-scaling of hydrogen production by co-cultures

Up-scaling of $\rm H_2$ producing co-cultures (2MC2 and 2MC6) were performed under batch culture using 0.75, 1.5 and 4 L feed (YMG) containing 0.5% glucose in reactors of 1, 2 and 5 L capacities, respectively.

Continuous culture hydrogen production using immobilized co-culture

Dried ligno-cellulosic materials — Banana leaves (BL), Coconut coir (CC), Groundnut shells (GS) or Pea shells (PS) were packed in Polyvinylchloride (PVC) tube (length: 3 cm and diameter: 2 cm) and tied with a 10 cm² nylon net to develop a cartridge for immobilizing bacteria, as described in previous study [13].

Download English Version:

https://daneshyari.com/en/article/7718032

Download Persian Version:

https://daneshyari.com/article/7718032

<u>Daneshyari.com</u>