

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

WO₃/BiVO₄ composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting

Issei Fujimoto^{*a,b*}, Nini Wang^{*a*}, Rie Saito^{*a*}, Yugo Miseki^{*a*}, Takahiro Gunji^{*a,b*}, Kazuhiro Sayama^{*a,b,**}

 ^a Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
^b Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 278-8510, Japan

ARTICLE INFO

Article history: Received 27 June 2013 Received in revised form 13 August 2013 Accepted 23 August 2013 Available online 25 September 2013

Keywords: Visible-light responsive metal oxide Hydrogen Applied bias photon-to-current efficiency Tungsten trioxide Bismuth vanadate

ABSTRACT

We report on the improvement in the water splitting efficiency of a WO₃/BiVO₄ composite photoelectrode by the application of an improved auto-combustion method to the preparation of porous BiVO₄ thin films. The unique feature of this preparation method is the addition of both NH₄NO₃, as a strong oxidizing agent, and an organic additive into BiVO₄ precursor solution. The local decomposition heat of the organic additive and oxidizing agent created a porous film with small, highly crystalline BiVO₄ particles. The photoelectrode has many advantages over existing ones, such as the high light-harvesting efficiency (LHE), a single BiVO₄ phase, the facile access of the holes to the photoelectrode/ electrolyte interface, and the ease of water and oxygen diffusion. The maximum incident photon-to-current efficiency (IPCE) was estimated to be 64% (at 440 nm, 1.23 V vs. RHE) and the applied bias photon-tocurrent efficiency (ABPE) reached as high as 1.28%. This ABPE value is highest among all oxide semiconductor photoelectrodes reported previously, except for the case of a stacking photoelectrode system.

Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ever since water splitting into hydrogen and oxygen by a TiO_2 photoelectrode under ultraviolet illumination was reported [1], various semiconductor photoelectrodes have been studied [2]. Porous *n*-type semiconductor photoelectrodes, especially, have been vigorously investigated using visible-light responsive metal oxides, as a practical water splitting method using

solar light. This is because oxide semiconductor photoelectrodes are superior in terms of the facility of oxygen evolution, as well as in the simplicity of preparation by a wetcoating and calcining process, and easy hydrogen collection at the counter electrode [2,3].

It is important to improve the applied bias photon-tocurrent efficiency (ABPE or η_{sun}^{ex}) for practical use of photoelectrodes, but the ABPE values are still very low.

* Corresponding author. Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. Tel./fax: +81 29 861 4760.

E-mail address: k.sayama@aist.go.jp (K. Sayama).

^{0360-3199/\$ —} see front matter Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijhydene.2013.08.114

2455

Approximate ABPE can be estimated from the reported current-potential (I–V) curve under simulated solar light [3-5]. The photoelectrodes of WO₃ semiconductor (band-gap energy $(E_g) = 2.7 \text{ eV}$ could split water effectively, and the maximum ABPE was estimated to be approximately 0.7% [6]. As for Fe_2O_3 semiconductor, the E_g of Fe_2O_3 is small ($E_g = 2.1 \text{ eV}$), hence visible light below about 590 nm can be used. The maximum ABPE of nanostructured Fe₂O₃, modified by Pt on Au substrate photoelectrode [7], was estimated to be approximately 1.1%. However, higher external voltage on Fe₂O₃ photoelectrodes is required to obtain sufficient photocurrent, because the conduction band potential (E_{CB}) of Fe₂O₃ is more positive than for WO₃. On the other hand, BiVO₄ is a semiconductor that is attracting attention as an effective candidate material for water splitting [3,8-29]. The E_g of BiVO₄ ($E_g = 2.4$ eV) is smaller than that of WO₃, which means it can utilize visible light below approximately 520 nm. It is noted that the E_{CB} of BiVO₄ is more negative than those of WO_3 and Fe_2O_3 . The valence band potential of BiVO₄ is more negative than those of the common oxide semiconductors, because the valence band of BiVO4 is formed by the hybridization of O-2p and Bi-6s orbitals [3,28,29]. In order to obtain efficient ABPE on BiVO₄ photoelectrodes, various modifications have been reported, such as a thin-film underlayer (SnO₂ [12,13] and WO₃ [14-20]), or the coupling with an oxygen evolution catalyst (cobaltphosphate [20–23], cobalt-borate [24] and FeOOH [25]). Recently, we have succeeded in greatly improving the efficiency of a WO₃/SnO₂/BiVO₄ composite photoelectrode using a highly concentrated carbonate aqueous electrolyte solution [18,19], whose maximum ABPE reached 0.85%. Furthermore, we stacked two of the same photoelectrodes to improve the light-harvesting efficiency (LHE), resulting in an ABPE of 1.35%, however, there was the problem of doubling the cost.

In this study, we have prepared $BiVO_4$ film of $WO_3/BiVO_4$ composite photoelectrodes using an improved autocombustion method, with both an organic additive and NH_4NO_3 (a strong oxidizing agent) added into the $BiVO_4$ precursor solution. The auto-combustion method is suitable for low-temperature synthesis of single-phased and porous materials, as well as nanoparticles of composite oxide due to the local decomposition heat of the organic additive and the oxidizing agent [30]. We report here that this preparation method improved both LHE by achieving efficient optical confinement structure and charge-transfer property. The maximum IPCE (incident photon-to-current efficiency) was improved to 64% (at 440 nm, 1.23 V vs. RHE) and the ABPE reached 1.28% without stacking.

2. Experimental details

2.1. Preparation of WO₃/BiVO₄ composite photoelectrodes

We prepared WO_3 /Bi VO_4 composite photoelectrodes by spincoating on conductive glass as follows. First, the WO_3 underlayer (optimal thickness of about 190 nm) was coated twice on F-doped SnO_2 (FTO) conductive glass substrate (surface resistance 10 Ω sq⁻¹, Nippon Sheet Glass Co., Ltd.) at 1000 rpm for 15 s. The WO₃ precursor was 0.7 mol dm^{-3} peroxotungstic acid aqueous solution, as reported previously [31]. The films were then calcined at 500 °C for 30 min for each coating. Subsequently, the BiVO₄ layer was coated six times onto the WO₃ underlayer using a spin-coater (1000 rpm, 15 s). The BiVO4 layer was prepared by an improved auto-combustion method. The BiVO4 precursor solution was prepared by mixing of $Bi(NO_3)_3 \cdot 5H_2O$ and V_2O_5 in 2 mol dm^{-3} HNO₃ aqueous solution [11]. The concentration of the BiVO₄ precursor solution was 0.07 mol dm^{-3} (Bi:V = 1:1). Furthermore, Triton X-100 $(C_{14}H_{22}O(C_2H_4O)_n)$ n = 9-10, non-ionic surfactant, 0.5 v/v %) and a large amount of NH₄NO₃ aqueous solution (5.52 mol dm⁻³, 9.9 v/v %) were added as an organic additive agent and oxidation agent, respectively. The films were calcined at 550 °C for 30 min for each coating. Triton X-100 improves the film uniformity. We refer to this photoelectrode as "BiVO4-TN". As reference samples, we also prepared the photoelectrodes with only NH₄NO₃ aqueous solution (BiVO₄-N), only Triton X-100 (BiVO₄-T), and no additives (BiVO₄-non) in the BiVO₄ precursor solution.

2.2. Photoelectrochemical measurements and characterizations

I-V curves were measured by an electrochemical analyzer (BAS. Inc. ALS630A) using a three-electrode cell with an Ag/ AgCl reference electrode and a Pt coil counter electrode. Potential sweeps (scan rate, 50 mV s^{-1}) were carried out in a direction from positive to negative to avoid overestimating ABPE. We used a 0.1 mol dm^{-3} or saturated (ca. 2.8 mol dm^{-3}) KHCO₃ aqueous solution with bubbling CO₂ gas as an electrolyte in a Pyrex glass cell with an antireflection film on the irradiation side. The working electrode with a black mask (aperture area of 0.28 cm²) and back reflection plate was irradiated from the BiVO₄ film side (front illumination), because of the larger photocurrent than from the FTO side (back illumination). We used a solar simulator (JIS-A-class, SAN-EI ELECTRIC Co.) as a light source. The light intensity of the solar simulator (Supporting information, Fig. S1a) was calibrated to AM-1.5 (1 SUN, 100 mW cm⁻², Fig. S1b) using a solar simulator spectroradiometer (SOMA Optics, Ltd), immediately after calibration using a standard light source (certification body, Japan Electric Meters Inspection Corporation, JEMIC).

We also investigated the amount of H_2 and O_2 evolved from the photoelectrochemical cell by a closed gas-circulating system with online gas chromatography (Shimadzu Co., GC-8A, TCD, 5A molecular sieves, Ar carrier). The photoelectrochemical cell consists of a WO₃/BiVO₄ composite photoelectrode, a Pt counter electrode and 0.1 mol dm⁻³ KHCO₃ aqueous electrolyte solution.

Light-harvesting efficiency (LHE) was calculated from equation (1).

$$LHE = 1 - R - T \tag{1}$$

Transmittance (T) and reflectance (R) was measured using an integrating sphere (Jasco, V-570, ISN-470).

Download English Version:

https://daneshyari.com/en/article/7720214

Download Persian Version:

https://daneshyari.com/article/7720214

Daneshyari.com