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The objective of this paper is to present a new triangular shell element for shakedown analysis. The
element is based on a mixed variational formulation with displacement/velocity and stress fields inde-
pendently interpolated. We also employ the continuum based (CB) approach which allows the definition
of the yield function at the continuum level without any approximation in terms of generalized stresses.
The formulation of the proposed element is presented in details after a brief review of relevant classical
shakedown theory concepts. The performance of the element is assessed by means of a set of selected
representative examples. The numerical tests include: (i) analyses of thin and thick-walled straight pipes
under combined loads, (ii) the shakedown analysis of a pipe bend under internal pressure and in-plane

bending and (iii) limit analysis of a cylinder—cylinder intersection subjected to bending and internal

pressure.
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1. Introduction

The safety of structures subjected to variable loading can
commonly be assessed by means of shakedown analysis. In the
classical shakedown theory (Debordes and Nayroles, 1976;
Kamenjarzh, 1996; Koiter, 1960; Nguyen, 2000) the structure ma-
terial is assumed linear elastic-perfectly plastic and the assessment
procedure involves finite element discretizations of the structure
and the use of dedicated numerical procedures for the solution of
the shakedown analysis problem (Maier et al., 2003).

In the case of thin structures, three-dimensional solid finite
element models can be computationally very expensive due to the
large number of elements required. Coarser meshes, on the other
hand, are prone to contain elements with high aspect ratios which
in turn can cause ill conditioning of the finite element equation
system and lead to loss of accuracy in the solution. These problems
are generally circumvented by using structural elements such as
beam, plate and shell elements. However, for limit and shakedown
analysis, the use of classical structural elements requires the
development of a solution approach with laborious approximations
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in terms of generalized stresses to express, for instance, the yield
limit of the material (Maier et al., 2003).

The contribution of this paper is the development of a shell
element for shakedown analysis of 3D structures which, in partic-
ular, bypasses the need to express the yield limit in terms of
generalized stresses. The proposed element is formulated using the
continuum based (CB) approach (Ahmad et al., 1970; Belytschko
et al., 2001; Benson et al., 2010; Buechter and Ramm, 1992;
Hughes and Liu, 19814, 1981b; Hughes, 1987; Simo and Fox, 1989)
and a mixed Hellinger-Reissner-type formulation (Bathe, 1996; Han
and Reddy, 1999; Christiansen, 1996) with stress and displacement/
velocity fields interpolated independently.

In our opinion, the use of mixed elements in this context is
advantageous because they can be more easily implemented. In
addition, for kinematically-based shell formulations (Belytschko
et al.,, 2001) the use of the kinematic minimum principle for
shakedown analysis requires the computation of the dissipation
function, which is unbounded unless plastic strain rates are plas-
tically admissible at all points of the element. This introduces a very
stringent constraint in non-constant plastic strain interpolations.

In the present development we focus our attention on the ability
of the finite element to efficiently represent solutions of the
considered problem, with special emphasis on the accurate deter-
mination of critical amplification factors for the prescribed refer-
ence domain of variable loadings. The numerical procedure used
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here for the general shakedown problem was presented in Zouain
et al. (2002), Zouain (2004).

A mixed discretization of the continuum formulation of shake-
down analysis leads to an approximate problem with augmented
number of unknowns (velocity and stress parameters) in compar-
ison to purely kinematical approaches. However, this discrete min—
max problem is equivalent to two convex optimization problems
and this fact is exploited in the numerical procedures commonly
used in shakedown analysis (see e.g. Zouain (Zouain, 2004)) with
the result that a unique algorithm is implemented to solve both
types of problems with identical computational cost.

The aim of obtaining critical load approximations in limit
analysis that could be surely classified as strict lower or upper
bounds has been frequently pursued by many authors. This
objective is attractive from a practical point of view, mostly because
lower bounds lead to true conservative safety assessment, and also
from a computational perspective, because errors on the load factor
can be bounded rather than estimated. In the case of 2D or 3D
continuum models there are successful discretizations attaining
strict lower and upper bounds, due to several authors, some of
which are cited in Zouain et al. (2014) with corresponding key
references. Differently, mixed finite elements are meant to be
efficient but they do not exhibit bounding properties, except for
very particular interpolations, which become then purely kine-
matical or strictly equilibrated and plastically admissible
(Christiansen, 1996). In the context of 2D continuum models, a
discussion of bounding inequalities relating a family of mixed,
kinematical and statical triangular elements was given by Zouain
et al. (Zouain et al,, 2014). In the case of shells, additional issues
arise, such as the approximations concerning the shell geometry,
that make strict bounds extremely difficult to achieve.

We remark that the proposed CB shell element differs from the
family of mixed two-field triangular shell elements of Bathe and co-
workers (Bathe and Lee, 2011; Kim and Bathe, 2009; Lee and Bathe,
2004) where displacement and strain fields are interpolated and
combined in a particular way with the main objective of avoiding
locking, usually present in pure displacement formulations. The
element developed in this paper also differs from the mixed (strain-
displacement) triangular shell element originally proposed by
Argyris and co-workers (Argyris et al., 2000, 2003, 1998, 2002) and
further modified by Corradi and Panzeri (Corradi and Panzeri, 2003,
2004) for application in sequential limit analysis.

The examples of applications presented in the article were
selected aiming to allow comparison with published results per-
taining to the field of shakedown analysis applied to shells. The
comparison of the proposed CB shell element to other finite ele-
ments available in the literature when used to solve linear or
nonlinear incremental analysis would be also worth to accomplish
(on a much wider set of published results) but this is beyond the
scope of the paper.

Another remark concerning the choose and evaluation of the
examples of application is worth pointing out: In general, contin-
uum based interpolations are not directly linked to any particular
shell theory, except for the conditions used to relate master and
slave degrees of freedom. Consequently, numerical results from CB
shells should be directly compared to analytical or numerical so-
lutions corresponding to a solid model of the shell. Nevertheless,
analytical or numerical known solutions to the differential equa-
tions of a particular shell theory are also used in practice whenever
the example closely fits the basic assumptions of the theory (or
even when no better solution is available for comparison).

The paper is structured as follows: We first present in brief the
concepts of the classical shakedown theory. Then we describe in
detail the theory and implementation of the CB shell element. Next,
the performance of the element in problems of limit and

shakedown analysis is illustrated by means of representative nu-
merical tests. The paper then closes with the presentation of
concluding remarks.

2. Classical shakedown theory

In this section we provide a brief review of the classical shake-
down theory (Koiter, 1960; Debordes and Nayroles, 1976), mainly
following (Zouain, 2004). In particular we present here: (i) the
formal definition of shakedown; (ii) the basic theorems of the
classical theory; and (iii) the set of equations to be solved in
shakedown problems both in the continuum and the discrete
setting.

Structures made of a perfectly plastic material can develop three
modes of failure when subjected to a combination of fixed and
variable loads. Namely, alternating plasticity (plastic shakedown),
incremental collapse (ratcheting), or instantaneous collapse (plas-
tic collapse).

The structure undergoes alternate plasticity when the fluctu-
ating loading program produces, after any arbitrarily large time,
some plastic deformation, as well as a subsequent vanishing of the
net plastic deformation. This induces failure due to low cycle fa-
tigue. Likewise, the structure fails by incremental collapse when
plastic deformations accumulate in the form of a compatible strain
distribution that leads to excessive inelastic deformation. Instan-
taneous collapse takes place when a non-fluctuating load produces
kinematically admissible plastic strain rates under constant
stresses. This later phenomenon can be seen as a particular case of
incremental collapse (for zero amplitude of load fluctuations)
(Maier et al., 2003; Zouain, 2004).

Classical shakedown theory deals with the prevention of any of
the aforementioned phenomena. Its main objective is the compu-
tation of the load amplification factor, u, ensuring elastic adaptation
(elastic shakedown). The computation of the amplification factor
that only prevents instantaneous collapse is particularly called limit
analysis.

Shakedown theory allows working under the realistic assump-
tion that only the range of variable loading is known. The pro-
cedures developed under this theory, collectively named direct
methods, make it possible the direct computation of the amplifi-
cation factor without the need of a theoretically generally infinite
number of full incremental analyses. Moreover, only the theory of
direct methods can answer whether critical loads or cycles do exist,
or not, independently from load histories.

2.1. Basic notation

2.1.1. Kinematics and equilibrium

Consider a body occupying an open bounded region # with a
regular boundary I. The set of all admissible velocity fields v
complying with homogeneous boundary conditions prescribed on
the part I'y of I' is the space V. Strain rate tensor fields d are ele-
ments of W, and the tangent deformation operator D maps V into
W. The dual space of W is the space W' of stress fields &. The
equilibrium operator 7/, dual of D, maps elements of W' into the
space of load systems F denoted by V'. Prescribed loads F vary
quasi-statically. The spaces V and V' are also dual. Consequently,
static and kinematic relations are written as

d=Dpv, F =105 (1)

Moreover, the hypothesis of small deformation holds and the
infinitesimal displacement and strain fields, u and & respectively,
are related by
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