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a b s t r a c t

An interface crack between dissimilar anisotropic thermoelastic solids subjected to uniform heat flow at
infinity and no mechanical loading on its boundary is analyzed. Generalized two-dimensional de-
formations such as plane stress and plane strain deformations are considered. The exact solution for the
thermoelastic fields is obtained on the basis of the thermoelastic formalism with the transformed
function representations. The closed-form solutions of the stress intensity factor and energy release rate
are obtained, and the explicit exact expressions for the stress intensity factor and energy release rate are
derived for both orthotropic and isotropic bimaterials. Numerical computations are performed using the
finite element method to verify the exact solutions. Close agreement is observed between the exact
solution and the numerical solution.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Analytic solutions for cracks in an elastic solid have received
much attention owing to their potential application in various kinds
of fracture problems. They provide a better understanding of the
distributions of elastic fields and shed light on the physical effects of
material constants and geometric parameters. The use of the exact
solutions alsomakes it possible to verify a newnumerical technique.

Layered structures composed of dissimilar materials have found
a variety of engineering applications in the fields of electronic de-
vices, semiconductors and optical electronics. There have been
numerous studies on a finite interface crack embedded in an
infinite bimaterial as a basic problem. Rice and Sih (1965) solved an
interface crack in dissimilar isotropic solids subjected to remotely
uniform stresses and obtained the exact solution of the stress in-
tensity factor. Suo (1990) studied the problem of interface cracks
between dissimilar anisotropic media, and Beom and Atluri (1996)
investigated interface cracks in an anisotropic piezoelectric bima-
terial. Thermal stresses induced in bimaterials under thermal
loading can cause growth of interface cracks, which often results in
premature structure failures. Lee and Shul (1991) solved an insu-
lated interface crack in an isotropic thermoelastic bimaterial by
using the complex variable method (Bogdanoff, 1954). Hwu (1990)
derived the extended Stroh formalism for anisotropic thermo-
elasticity on the basis of the Stroh formalism (Stroh, 1958).

Subsequently, Hwu (1992) solved interface crack problems in dis-
similar anisotropic thermoelastic media by applying the extended
Stroh formalism. Banks-Sills and Dolev (2004) and Khandelwal and
Chandra Kishen (2009) numerically investigated interface cracks in
an isotropic thermoelastic bimaterial. Li and Kardomateas (2006)
solved an interface crack in an anisotropic thermoelastic bimate-
rial on the basis of the extended Stroh formalism. However, the
correct exact solution of the stress intensity factor for an interface
crack in dissimilar isotropic or anisotropic thermoelastic solids is
not yet resolved in the explicit form (Banks-Sills and Dolev, 2004).
Hence, the problem of an interface crack in a thermoelastic bima-
terial is revisited in this paper. The extended Stroh formalism is not
valid for a degenerate anisotropic material with multiple thermo-
elastic characteristic roots. Recently, Beom (2013a,b) developed a
new anisotropic thermoelastic formalism based on the transformed
function representation, which does not break down for a degen-
erate anisotropic solid.

The purpose of this study is to investigate an interface crack
between dissimilar anisotropic thermoelastic solids with infinite
extents. The anisotropic bimaterial is subject to uniform heat flow
at infinity under steady-state conditions, and the crack surface is
assumed to be thermally insulated. No mechanical loading is
applied to its boundary. The interface crack problem is formulated
on the basis of the transformed function representations for plane
solutions of anisotropic thermoelastic solid, (Beom, 2013a) and the
exact solution for thermoelastic fields is obtained in the integral
form. Special attention is paid to the interface stress intensity factor
and energy release rate for the interface crack. The interface stress
intensity factor and energy release rate for an anisotropic
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bimaterial are derived in the closed form. In particular, the exact
expressions of the interface stress intensity factor and energy
release rate for orthotropic and isotropic bimaterials are explicitly
obtained, and the effects of thermal load and material parameters
are discussed. To verify the exact solution for the stress intensity
factor and energy release rate, numerical computations are per-
formed by using the finite element method.

2. Formulation

Consider an anisotropic solid subjected to an arbitrary two-
dimensional thermal condition on its surface. The temperature
field depends only on the in-plane coordinates x1 and x2. Under
steady-state conditions, two-dimensional thermal fields satisfying
the heat conduction equation can be written as (Nowacki, 1962)
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Here, T is the temperature change from a reference temperature for
an unstressed state, qi is the heat flux, U(z0) is the thermal potential
function, and z0 ¼ x1 þ p0x2. p0 and k are given by
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where kij is the symmetric coefficient of heat conduction,

l0 ¼ k22
k11

;

n0 ¼ k12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11k22

p :

(3)

Recently, Beom (2013a) derived transformed function repre-
sentations for plane solutions of an anisotropic thermoelastic solid.
The thermoelastic formalism is valid for a degenerate anisotropic
solid with multiple thermoelastic characteristic roots as well as for
an anisotropic solid with distinct thermoelastic characteristic roots.
According to the thermoelastic formalism (Beom, 2013a), a general
solution of elastic fields that satisfies the equilibrium equation for
an anisotropic thermoelastic solid under generalized two-
dimensional deformation can be written as follows:

fuig ¼ 2Re
	� iH



fðx1; x2Þ þf0ðx1; x2Þ

�
þUðz0Þc0

i
;

fs1ig ¼ �2Re
�

v

vx2

�
fðx1; x2Þ þ f0ðx1; x2Þ

��
;

fs2ig ¼ 2Re
�

v

vx1

�
fðx1; x2Þ þ f0ðx1; x2Þ

��
ði ¼ 1;2;3Þ:

(4)

Here, ui is the displacement, sji is the stress, and Re denotes the real
part. f, f0, and c0 are given by
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Here, gi(z) (i ¼ 1, 2, 3) are complex functions in which z ¼ x1 þ px2,
where p is a complex number with a positive imaginary part,
zi ¼ x1 þ pix2, and pi (i ¼ 1, 2, 3) are the roots with a positive
imaginary part to the characteristic equation N(pi) ¼ 0. The func-
tions N(p), x(p), h(p), c(p), and A0

i ðpÞ (i ¼ 1, 2, 3) are
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Here, a01 ¼ a011;a
0
2 ¼ a022;a

0
4 ¼ 2a023;a

0
5 ¼ 2a013; and a06 ¼ 2a012, in

which a0ij is the coefficient of thermal expansion. Eqs. (4)e(8) are
valid for plane stress deformation (s33 ¼ 0). For plane strain
deformation (ε33 ¼ 0), Sij and ai are replaced with S*ij and a*i ,
respectively, where

S*ij ¼ Sij �
Si3Sj3
S33

;

a*i ¼ a0i �
Si3
S33

a03;

(9)

where a03 ¼ a033. H is the Hermitian matrix given by

H ¼ L þ iM; (10)

where L and M are symmetric and antisymmetric real matrices,
respectively. The explicit expression of H can be found in Wei and
Ting (1994). Once the heat conduction problem is solved for U(z)
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