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a b s t r a c t

The proper estimate of capillary attraction is of great importance in many situations, for example the
reliability assessment of Micro- Electro-Mechanical Systems (MEMS) with respect to spontaneous
adhesion. In spite of many theoretical studies, there is a lack of general methods for obtaining the exact
shape of the liquid meniscus between the asperities of rough surfaces. In this paper, a new analytical
method is developed for the specific case of axysimmetric configurations. The outcomes of such a
method are critically compared with the approximate solution which is usually proposed in the litera-
ture. Moreover, an improved simplified method is constructed and validated. Finally, a more general
procedure (based on the Finite Element Method) is proposed, with possible application to non-
symmetric geometries.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The reliability of Micro-Electro-Mechanical Systems (MEMS) is a
topic of paramount importance for technological advances: proper
design and fabrication of micro-devices must ensure the perfect
functioning both in standard exercise conditions and in extreme
situations. Among the various dangerous phenomena, spontaneous
adhesion can seriously compromise the MEMS reliability. Due to
the high surface-to-volume ratio, the adhesive forces between
parts in contact may exceed the elastic restoring force: in this case,
the components remain stuck to each other and the microsystem
can be completely unusable. This situation is addressed to in the
literature as stiction, a neologism coined from static friction (see e.g.
(Mastragelo and Hsu, 1993) and (Tas et al., 2003)).

Various phenomena can contribute to the adhesion at the nano-
scale causing attractive forces between components: the most
relevant ones are van der Waals (Delrio et al., 2005) and capillarity
forces (Hariri et al., 2007). This research mainly focuses on the
latter, caused by liquid menisci capillary condensation which en-
tails the formation of liquidmenisci around the contact areas of two
neighbouring asperities. The computation of the capillarity forces is
subordinated to the evaluation of the shape of themeniscus and the
solution of such a problem represents an awkward task. One can

follow two different approaches (Payam and Fathipour, 2011)
depending on whether or not thermodynamic equilibrium is
assumed between the liquid and the surrounding gas. If equilib-
rium is assumed, the meniscus mean curvature is constant and
Kelvin equation holds, which is solvable either in analytical (Stifter
et al., 2000) or in numerical (Pakarinen et al., 2005, Chau et al.,
2007) way; if no equilibrium is assumed, a formulation based on
liquid volume conservation must be considered. Many works refer
to this situation (Rabinovich et al., 2005, Mu and Su, 2007, Payam
and Fathipour, 2011); however it is more realistic to assume ther-
modynamic equilibrium since, in a typical situation, menisci be-
tween MEMS components are caused by capillarity condensation
and there is no way to evaluate the volume of the liquid bridges
from which the estimate of the force depends (Butt, 2008).

Whatever option will be taken, the proper evaluation of the
capillarity force requires the computation of the geometrical shape
of the menisci. In spite of many important theoretical studies (see
e.g. (Lian et al., 1993; Melrose, 1966)), there is a lack of general
methods to be applied for obtaining the exact configuration of the
liquid bridge. The problem has been tackled for simple cases, such
as a meniscus between two spheres or between a sphere and a flat.
As a matter of fact, those cases are consistently far away from the
realistic situation of rough surface, endowed with a random dis-
tribution of asperities with generic shape. Nonetheless, it is
possible to envisage that satisfactory results could be obtained by
replacing the actual geometry of the asperities by means of
approximate axisymmetric surfaces. In this ambit, many
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approximations have been proposed, both geometric and numeric,
as equal contact angle with the two particles between which the
meniscus is formed (Israelachvili, 2011, Lambert et al., 2008, Mu
and Su, 2007), same radius for the two spheres (Mu and Su, 2007,
Rabinovich et al., 2005), circular arc or paraboloid approximation
for the vertical profile of the liquid bridge interface (de Lazzer et al.,
1999, Pepin et al., 2000, Stifter et al., 2000): it is demonstrated that
circular approximation is suitable in many situations (Pakarinen
et al., 2005). Another approximation that usually holds is based
on the assumption that the liquid menisci extend much further in
the direction parallel to the gap than normal to it (de Boer and de
Boer, 2007, Butt, 2008), which is reasonable only when the dis-
tance between the particles is quite small. Otherwise, it can lead to
a discrepancy between the calculated forces and experimental re-
sults because menisci can be stretched along their axis and the
assumption does not hold anymore.

In this research, a new predictive analytical tool for the attrac-
tive force due to a single meniscus in axisymmetric conditions has
been developed, with the aim of obtaining the exact solution for the
meniscus shape in the hypothesis of thermodynamic equilibrium.
The analytical tool has been obtained by applying, in an innovative
way, a mathematical procedure originally proposed in (Kenmotsu,
1980). The results obtained by the exact approach have been crit-
ically compared to some quick, though approximate, procedures
based on reasonable geometric assumptions: a standard approxi-
mate procedure has been considered and a new, refined model has
been developed in order to obtain better results. In any case, the
aforementioned approximation for normal and parallel sizing has
been avoided. Finally, the analytical outcomes have been adopted in
order to validate a generic simulation tool based on the numerical
simulation of the meniscus mechanical behaviour. Such a tool,
which represents another innovative aspect of this paper, has the
outstanding merit of possible application to non-axisymmetric
geometries.

This paper is organized as follows: Section 2 contains some basic
information on capillary attraction; the exact solution for the
meniscus shape is summarized in Section 3; the approximate
procedures are described in Section 4; Section 5 contains the
description of the numerical approach; a certain number of results
are reported in Section 6, along with critical comparisons; some
conclusions and future prospects are drawn in Section 7.

2. Capillarity

When two micro-particles are close to contact, if the surfaces
are lyophilic with respect to a surrounding vapour, some vapour
will condense and form a meniscus. The meniscus causes a force
that attracts the particles for two reasons: the direct action of the
surface tension of the liquid around the periphery of the meniscus
and the pressure inside the meniscus, that is reduced as compared
to the outer pressure by the capillary pressure DP, which acts over
the cross-sectional area of the meniscus.

The computation of both these contributions is subordinated to
the evaluation of the shape of the meniscus. The solution of such a
problem represents a non-trivial task, even in the case of regular
asperities.

According to the physical properties of the surface, themeniscus
will form the given contact angle q with the solid surface. The two
additional equations describing the thermodynamic equilibrium
state of a meniscus are the YoungeLaplace equation and the Kelvin
equation (Adamson and Gast, 1997). The first one relates the cur-
vature of a liquid interface to the pressure difference DP between
the two fluid phases. In the self-weight of the meniscus is negli-
gible, the enforcement of the mechanical equilibrium of the inter-
face leads to the YoungeLaplace equation:

DP ¼ Pl � Pg ¼ gL

�
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þ 1
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�
≡
gL

rk
(1)

Here, gL is the surface tension of the liquid, l and g denote the liquid
and the gas respectively, r1 andP are the principal radii of curvature
that describe the interface, rk is the Kelvin radius. Even if the sign of
the radius of curvature is usually defined with respect to the choice
of a normal to the surface, in capillarity theory it is common to
count the radius positive if the interface is curved towards the
liquid. As a result, a spherical liquid droplet with radius R in a gas
has _S½w� whereas a spherical bubble in a liquid has r1 ¼ r2 ¼ �1/R.

The Kelvin equation, instead, relates the actual vapour pressure
P to the curvature of the surface of the condensed liquid:

rk ¼
�
1
r1

þ 1
r2

��1

¼ gLVm
RT logðP=P0Þ

¼ gLVm
RT logðRHÞ (2)

where R is the molar gas constant, T the absolute temperature, P0
the saturation vapour pressure over a planar liquid surface and Vm

the molar volume of the liquid. For a typical meniscus with hy-
drophilic contact angle, r1 < 0, r2 > 0, r2 [ r1 and so 1/r1 þ 1/r2 is
negative: coherently P < P0 and log(P/P0) is negative.

Once the geometric configuration of the meniscus has been
obtained, straigthforward considerations allow one to obtain the
area of the horizontal projection of thewetted region (A ¼ pr2m) and
the length of the contact circle (L ¼ 2prm). The (vertical) attraction
force exerted on the two surfaces is given by the sum of the
following actions: 1) surface tension over the contact length,
gLL

��tuz ��, where tuz is the vertical component of the unit tangent to the
meniscus at the contact point with the solid surface; 2) capillary
pressure over the wetted area, jgL/rkjA.

3. Exact solutions for axisymmetric geometries

The problem of describing analytically surfaces with pre-
scribed mean curvature was tackled and solved in (Kenmotsu,
1980). Such a contribution has been largely overlooked in the
ambit of capillary condensation, in spite of its perfect suitability
to the problem at hand. In this Section, we prove that the pro-
cedure proposed in (Kenmotsu, 1980), if properly adapted, can be
used in order to find the analytical solution for the meniscus
shape. This is of paramount importance, for a twofold reason:
first, the difficulties and inaccuracies of the numerical solutions
of the governing differential equation are avoided; second, some
specific features, specially regarding unstable behaviour, can be
pointed out, contrarily to what can be done with a numerical
approach.

Let z be the axis of rotation, as depicted in Fig.1. If the generating
curve in the x¼ 0 plane is expressed in parametric form as y(s), z(s),
the principal radii of curvature are:

1
r2

¼ �z0ðsÞ
yðsÞ

1
r1

¼ �z00ðsÞy0ðsÞ þ z0ðsÞy00ðsÞ (3)

curvatures are positive if oriented as n(s), where the normal to the
curve is such that the vector product n(s)∧t(s) ¼ ex, i.e. is oriented
as the out-of-plane x axis. Wewill henceforth impose the condition
z
0
(s)2 þ y

0
(s)2 ¼ 1, which identifies s as the arc length.

As will be shown later on, the families of surfaces describing
physical menisci are associated with generating curves of the type
depicted in Fig. 1 on the left, where the portion of interest is any of
the “ribbons” described by the curve and characterized by negative
z
0
(s). The signs adopted in Eq. (3) have been selected to comply with

the conventions of the previous section (i.e. radius of curvature
directed towards the meniscus).
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