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a b s t r a c t

The present paper is concerned with the effects of the Lode angle (or the third stress invariant) in the
yielding of porous materials. This is addressed in the framework of Gurson’s analysis of voided materials.
It is shown first that without the approximations operated by Gurson, the Lode angle of the macroscopic
strain rate is naturally involved in the analysis and consequently the third stress invariant affects the
yield criterion. Pushing forward Gurson’s analysis without his approximations and still considering his
axisymmetric trial velocity field, changes on the predicted yield locus are observed but only in the in-
termediate range of triaxialities. The same predictions are obtained for very small and very large stress
triaxialities. A more carefull inspection of the results shows in fact that most of the changes are second
order effects and direct effects of the Lode angle are hardly visible.

Pursuing the analysis with a new class of trial velocity fields due to Si et al. (2007) (containing the
Gurson field) and including non-axisymmetric contributions, changes on the prediction of the yielding
behaviour are observed at the low triaxiality regime. Again, effects of the Lode angle are seen to be rather
small at least in the range of porosities pertinent to ductile fracture. However, inclusion of Lode angle
brings changes on the shape but also on the symmetries of the yield domain. The exact hydrostatic
prediction obtained in the Gurson model is also maintained here. Comparison with the numerical
simulations presented by Thoré et al. (2011) using optimization algorithms in the context of limit analysis
show a very good agreement with the results and in particular that these results fall well between the
static and kinematic limit analysis bounds that they furnished.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The modelling of the behaviour and failure of ductile porous
media has been and is nowadays again the subject of intense re-
searches in non linear mechanics of materials. In their pioneering
analyses, McClintock (1968) and Rice and Tracey (1969) studied the
growth of long cylindrical voids and spherical voids respectively
and showed that the void growth in ductile metals is strongly
dependent on the hydrostatic stress. A decade later, Gurson (1977)
proposed a yield criterion for voidedmaterials using a limit analysis
approach combined to a homogenization procedure and clearly
explicited the role of the hydrostatic stress on the yielding behav-
iour of porous materials. Their observations have made the back-
ground for several fracture models still used today. However, there
are a number of experimental situations where the above theories
are shown to be unable to reproduce the observations. The most

important ones are those where susceptibility to shear failure un-
der low or negative triaxialities (McClintock, 1971; Teirlinck et al.,
1988; Johnson and Cook, 1985; Bao and Wierzbicki, 2004;
Barsoum and Fakeslog, 2007; Bai and Wierzbicki, 2008; Nahshon
and Hutchinson, 2008; Fourmeau et al., 2013) is observed. Shear-
dominated stress states such as plugging failure in projectile
penetration are other examples (Børvik and et al., 2001) and many
others can be found in the above references.

A number of improvements to the Gurson model exist in the
literature. The Tvergaard refinement of the model (Tvergaard, 1981,
1982, 1990) including possible void interactions and the Gursone
TvergaardeNeedleman (Tvergaard and Needleman, 1984) model
are probably the most well known. But several other contributions,
addressing different issues, attempted to improve the Gurson
model: an account of void shape effects is given in Gologanu et al.
(1997), Gologanu et al. (1993), Gologanu et al. (1994), Garajeu et al.
(2000) and Monchiet et al. (2006), the role of plastic anisotropy is
studied in Benzerga and Besson (2001), the extension to pressure
sensitive matrix behaviour is analysed in Thoré et al. (2009). The
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above contributions did not consider possible effects of the Lode
angle.

It is interesting to note that the mechanics communities of soil,
rock and concrete materials also used for some time conventional
plasticity models for pressure sensitive materials (see e.g. Roscoe
and Burland, 1968) formulated only in terms of the first and sec-
ond stress invariants. But following the evidence of experimental
observations on these materials (Chen and Saleeb, 1982; Lade and
Duncan, 1975; Matsuoka and Nakai, 1974; Willam and Warnke,
1975), they recognized a long time ago how the third invariant of
stress can affect significantly the fracture of these materials. This
had led to a number of phenomenological macroscopic plasticity
models involving the three stress invariants, see the review by
Bardet (1990). These materials can, in general, withstand higher
deviatoric stresses when subjected to confinement. There is yet
another field where the third invariant of stress was observed to be
an important parameter, this is the field of shape memory alloys
where the transformation surfaces are seen to be affected by the
Lode angle (Lavernhe Taillard et al., 2009).

The objective of this paper is twofold: on one side to introduce
consistently the third invariant of the stress (or the Lode angle) in
yielding and fracture of ductile materials and this is first carried out
here in the framework of the Gurson analysis using his axisym-
metric trial velocity field. And second, to possibly improve the
predictions of the Gurson model, still including the Lode angle, by
using another class of trial velocity fields proposed by Si et al.
(2007) in a similar way as Monchiet et al. (2006) did, using the
exterior field (to the inclusion) provided by Eshelby (1957) for the
infinite space.

The Lode angle effects have been included and studied in a
consistent way by Danas et al. (2008), see also Danas and Ponte
Castañeda (2009) in an alternative approach to limit analysis of
unit cell and based on second order variational homogenization
techniques, which provide non linear HashineShtrikman type up-
per bounds of the exact yield surfaces. The representative
elementary volume, considered in such approach, consists of a
rigid-plastic solid matrix containing ellipsoidal cavities. The results
of Danas et al. (2008) will be compared to our results in this paper.

In Section 2, we present the general framework for the theory of
plasticity of voidedmaterials involving the three stress invariants in
the case where the constitutive behaviour of the matrix is consid-
ered isotropic. We then concisely review the Gurson model and its
derivationmainly in order to recall and emphasize the assumptions
upon which it is built. Still using his trial velocity field, we present
and discuss a parametric representation of the yield criterion
involving the three stress invariants. In Section 4 an extended
version of the Gurson model including the third invariant of stress
is developed using a more general velocity trial field provided by Si
et al. (2007). The last section thoroughly discusses the results and
compare them to the numerical simulations by Thore et al. in the
framework of limit analysis.

2. Isotropic plasticity theory of voided materials

2.1. Preliminaries

For voided materials with isotropic matrix behaviour, the gen-
eral theory of plasticity indicates a macroscopic yield function
dependent on the three stress invariants of the macroscopic stress
tensor S. The first and second invariants define respectively the
hydrostatic stress Sm ¼ Skk=3, and the effective von Mises stress,
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components of the stress deviator S0 while the third invariant of
stress is usually defined by

J3 ¼ detS0 ¼ SijSikSjk ¼ ðS1 � SmÞðS2 � SmÞðS3 � SmÞ (1)

where the expression on the right is in terms of the principal
stresses, assumed to be ordered as S1 � S2 � S3. Beside J3, various
equivalent measures are classically used to describe effects of the
third stress invariant. One of these is the Lode angle defined by
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and lying in the range 0 � Q � p=3.
The Lode angle Q allows to write the stress deviator (in its

principal frame) as
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and therefore the principal deviatoric stresses as
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2.2. Stress invariants and some general consequences

Invoking isotropy, the macroscopic dissipation and any of its
upper bounds that will be considered in the sequel are assumed to
depend on the three strain rate invariants defined in a similar
manner as those of the stress in Section 2.1. These invariants are
usually defined by
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Here again, it is convenient to introduce the Lode angle related
to the strain rate tensor, called h and defined by
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and write the strain rate deviator in the following form in its
principal frame
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When the macroscopic dissipation is taken as a function of the
three invariants _Em, _Eeq, det _E

0
or equivalently in the form

P ¼ Pð _Em; _Eeq; cos 3 hÞ (note that cos 3 h is an invariant), the
macroscopic stress tensor in the porous solid is given by

S ¼ vP

v _Eeq

v _Eeq
v _E

þ vP

v _Em

v _Em
v _E

þ vP
vcos 3h

vcos 3h

v _E
(8)

A. Benallal et al. / European Journal of Mechanics A/Solids 47 (2014) 400e414 401



Download English Version:

https://daneshyari.com/en/article/772342

Download Persian Version:

https://daneshyari.com/article/772342

Daneshyari.com

https://daneshyari.com/en/article/772342
https://daneshyari.com/article/772342
https://daneshyari.com

