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a b s t r a c t

A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage
and frequency is presented. The model includes the stator and rotor slot openings, the actual winding lay-
out and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account.
It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by
the winding function procedure. These harmonics are usually ignored in d–q models. The machine per-
formance is simulated in the stator reference frame to depict the difference between this new direct-
phase model including all harmonics and the conventional rotor reference frame d–q model. Saturation
is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained
by finite-element software FEMAG DC�. The detailed phase-variable model can yield torque pulsations
comparable to those obtained from finite elements while the d–q model cannot.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The synchronous reluctance motor in its simplest form is a sali-
ent pole synchronous motor without any rotor field winding. De-
spite its shortcomings of lower output power and power factor,
the motor is cheap, robust and capable of operating at zero slip.
It is used in small sizes, where constant speed synchronous drives
are required. For line-start motor operation and for good damping,
a rotor cage is needed. The development of inverter drives permit-
ted the removal of the rotor cage to give way to modifications of
the rotor geometry to improve the saliency ratio on which both
torque and power factor depends [1]. The presence of a cage how-
ever does not preclude the use of inverters for speed and torque
control. All the benefits of the line-start version (robust rotor,
damping and line-start capability) can be retained without sacrific-
ing much of the saliency characteristics, if transverse laminated
(TLA) rotors are used with the flux barriers filled with non-mag-
netic cage bars (aluminum or copper) as shown in Fig. 1. The de-
sign of Fig. 1 as used in this study is not optimized either for
torque ripple reduction or for optimal saliency ratio.

The electrical model of both line-start and inverter fed ma-
chines (in phase variables) are differential equations having

time-varying coefficients on account of the dependence of machine
inductances on rotor position. Solution of such equations is chal-
lenging even for simplest cases. The d–q model was invented solely
as a means of solving this problem by making the coefficients of
the differential equations (inductances) constants. It turned out
to have many more advantages as it revolutionalized ac machine
analysis and control [2,3]. The procedure depends on the assump-
tion that mmfs of all the windings vary sinusoidally with rotor po-
sition. The airgap permeances are modified by Carter’s coefficients
to account for slot openings. Unlike d–q models, phase-variable
models can conveniently analyze machines having unsymmetrical
windings, windings with different number of turns and faulty con-
ditions [4,15]. It should be clear that a phase-variable model that
does not include mmf, slot and permeance harmonics should give
nearly the same results as a d–q model with the only difference
being that the machine differential equations are now solved di-
rectly with its time-varying coefficients [5]. In such cases, the d–
q model merely reduces the complexity of an already reduced-or-
der model equation.

The purpose of this paper is to use the actual winding place-
ment positions and the geometry of the airgap including both sta-
tor and rotor slots to analyze the machine and see to what extent
this differs from the sinusoidally assumed d–q models. To accom-
plish this, we utilize a combination of the winding function theory
and a direct-phase-variable model for analysis. A substantial part
of the paper is devoted to modeling of the machine parts for
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accurate calculation of inductances using direct winding function
method [12].

The authors are aware of a technique known as coupled-circuit
model [6] which considers two adjacent rotor bars as a winding
loop. The method can readily yield the instantaneous rotor bar
and end-ring currents. This study avoids such methods on the
grounds that too many parameters are required, and because it
does not bring in the effects of slot, mmf and permeance variations
directly. Thus the instantaneous bar and end-ring currents are sac-
rificed for the rotor currents in the equivalent d- and q-axis. The
advantage of the procedure reported here is that it provides a com-
mon basis for comparison of the phase-variable model with the
conventional d–q model.

2. The direct-phase-variable model

Phase-variable model simulation of synchronous machines was
first reported in [4] as a way of predicting machine performance
during faults and unbalanced loading conditions. In [7], the effect
of saturation was introduced while Abdel-Halim and Manning [8]
studied the effect of additional dynamic saturation and included
results of different loading conditions. A common feature of
[4,7,8] is that they all neglected higher order harmonics. Working
with a permanent magnet motor, Mohammed et al. [9] simulated

machine performance in direct-phase co-ordinates, using time-
stepping finite-element software, but did not indicate the har-
monic content of the inductances although the results show its ef-
fects on machine performance. The study conducted in [10] on
induction motor used an object-oriented software DYMOLA� and
included the effects of slot and winding harmonics and provided
results on torque pulsations.

The analysis that follows is for the machine shown in Fig. 1,
which has three symmetrical phase windings in the stator. The
cage is modeled as two equivalent windings, one in the q-axis
and the other in the d-axis. In the stator reference frame, the
first-order differential equations describing the electrical circuit
of a three-phase reluctance motor using conventional notations
are given as (1) while (2) are the model equations of the same mo-
tor transformed onto d–q rotor reference frame.
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Accomplishing (2) from (1) is an established procedure [3] and re-
lies on the assumption that all winding harmonics except the fun-
damental and all permeance harmonics, except the 2nd, are
neglected. This assumption permits the use of Park’s transformation
matrix:
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The nature of the rotor necessitates that the stator self and mutual
inductances, and the stator-to-rotor mutual inductances vary with
rotor position hr. These expressions for the conventional procedure
are well documented in the literature [3].

For ease of solution, (1) can be rewritten as:

½V � ¼ ½R�½I� þ d
dt
ð½LðhrÞ�½I�Þ ð4Þ

or more conveniently as:
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where

xr ¼
dhr

dt
ð6Þ

and L(hr) is the 5 � 5 inductance matrix appearing in (1).

Fig. 1. (a) Axial cross-section of the synchronous reluctance machine and (b) the
winding layout.
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