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H I G H L I G H T S

• Deep neural network used to map battery signals directly to SOC.

• Deep neural network self-learns network weights.

• Neural network SOC estimator is shown to be computationally efficient.

• Increased SOC estimation accuracy and robustness by adding noise to training data.

• One deep neural network learns to estimate SOC over many ambient temperatures.
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A B S T R A C T

Accurate State of Charge (SOC) estimation is crucial to ensure the safe and reliable operation of Li-ion batteries,
which are increasingly being used in Electric Vehicles (EV), grid-tied load-leveling applications as well as
manned and unmanned aerial vehicles to name a few applications. In this paper, a novel approach using Deep
Feedforward Neural Networks (DNN) is used for battery SOC estimation where battery measurements are di-
rectly mapped to SOC. Training data is generated in the lab by applying drive cycle loads at various ambient
temperatures to a Li-ion battery so that the battery is exposed to variable dynamics. The DNN's ability to encode
the dependencies in time into the network weights and in the process provide accurate estimates of SOC is
presented. Moreover, data recorded at ambient temperatures lying between −20 °C and 25 °C are fed into the
DNN during training. Once trained, this single DNN is able to estimate SOC at various ambient temperature
conditions. The DNN is validated over many different datasets and achieves a Mean Absolute Error (MAE) of
1.10% over a 25 °C dataset as well as an MAE of 2.17% over a −20 °C dataset.

1. Introduction

Li-ion batteries are not only heavily used in most portable electro-
nics and Electric Vehicles (EV) but are also used in smart-grid tech-
nology for load levelling as well as in newer technologies like
Unmanned Aerial Vehicles and passenger drones aimed for medium to
short range distances [1]. This can be attributed to many advantages
that Li-ion batteries offer over other batteries. These include a high
specific energy and energy density which allows electrified vehicles
longer electric-only driving range, high cycle life, high Coulombic ef-
ficiency (up to 98%) and low self-discharge [2,3]. In 2015, 50% of all
nitrogen oxide air pollutants in the world, corresponding to 53 million
tonnes of airborne nitrogen oxide emissions, can be attributed to the

transportation sector. Furthermore, half of the overall health-related
economic cost, estimated to be $865 billion in 2010, is credited to air
pollution [4]. Nowadays, some countries are taking proportionate ac-
tion to counteract these negative effects by banning new petrol and
diesel powered vehicles by 2030 or as early as 2025, in the case of
Norway. Due to the advantages of the Li-ion batteries outlined above,
electrified vehicles powered by Li-ion batteries are currently one of the
best ways to mitigate these issues.

A reliable state of charge estimation is required to ensure an accu-
rate gauge of a vehicle's remaining driving range as well as proper
balancing of the battery pack [3,5,6]. Due to unpredictable driving
habits and the repeated acceleration and deceleration of a vehicle, the
battery can be exposed to highly dynamic load demands. As a result of
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these dynamic load demands, SOC estimation is a tedious task. SOC is
not an observable quantity, therefore its accurate estimation becomes
essential for reliable and safe operation of the vehicle [5,7].

SOC is defined as the remaining charge within the battery and is defined
as the ratio of the residual capacity of the battery to its nominal capacity
[3]. The relationship between the battery's observable signals to the esti-
mated SOC is a highly non-linear one, varying with temperature and dis-
charge/charge currents [8,9]. Traditionally, the two main estimation
methods have used open circuit voltage based techniques and coulomb
counting [7,10]. These methods are known to have their limitations and
have been generally displaced by more sophisticated methods. They include
Luenberger observer [7,11], adaptive observer [7,12], sliding mode ob-
server [7,13,14], and Kalman filters [15–17]. Typically, in observer
methods, the parameters of an equivalent circuit model like resistances and
open circuit voltage are fit to observed battery current and voltage data. An
estimate is issued by mapping these parameters to SOC. In Kalman filter-
based algorithms, it is typically required to linearize around an operating
point which can significantly increase computational load. The measured
current, voltage and the previously estimated SOC are provided to the al-
gorithm and the filter issues an estimate of SOC at the next time step. These
techniques are often tied to some battery model, like a lumped parameter
model or an equivalent circuit model which require arduous model iden-
tification to adequately represent the non-linear behavior of a battery. In
addition, they often require large numbers of parameters or different ver-
sions of the model to perform SOC estimation at varying ambient condi-
tions.

Strategies involving classic machine learning algorithms have also been
used in the past. The benefit of these types of techniques is that they can be
trained with real world data and self-learn SOC estimation without the need
for hand-engineered models. However, when neural network were solely
used, the results were typically not accurate enough, and therefore required
the additional use of Kalman filters or other inference mechanisms to
achieve sufficient estimation accuracy. Although some works have used
Kalman filters in conjunction with combined battery models or equivalent
circuit battery models [18], many other works have also used them in
conjunction with NN battery models. In Ref. [19], a trained 2-layer Neural
Network (NN) with 30 neurons in the hidden layer estimates terminal
voltage within a 4% Root Mean Square (RMS) error. However, to estimate
SOC and to further reduce the RMS error to 2%, the NN is used as a battery
model in an Extended Kalman Filter (EKF). In Ref. [20], an Extreme
Learning Machine is used at a constant ambient temperature of 25 °C. An
SOC estimation error of under 1.5% is claimed however this is only
achieved in conjunction with a Kalman filter as well. Furthermore, the ex-
treme learning machine is trained on constant discharge pulses hence their
performance in transient load demand, experienced in real world scenarios,
is unknown. In Ref. [21], a SVM is used with a moving window to increase
computational efficiency when modeling the battery; a Mean Absolute Error
(MAE) of less than 2% is achieved. However, as is the case for the above
works, it achieves this MAE in conjunction with an EKF. In Ref. [22], a load
classifying neural network is trained on 12 US06 drive cycles however
different neural networks are used for idling, charging and discharging
operation. The method achieves an average estimation error of 3.8% or
2.6% when additional filtering is performed. Furthermore, validation is
performed on pulse discharge tests hence the method's performance in real
world applications is unknown.

More recently, additional works have utilized model-based and
machine learning-based approaches for battery SOC estimation. One
such approach uses a moving average estimation with a reduced elec-
trochemical model which is able to perform estimation without line-
arization error and allows for constraints on states like the internal
resistance state and Li-ion concentration [23]. In Ref. [24], a fuzzy C-
means and subtractive clustering method is used along with a SVM for
SOC estimation. The work performed in Ref. [25] builds on the latter
fuzzy-SVM approach by using a genetic algorithm-based fuzzy C-means
clustering technique with a backpropagation algorithm to estimate SOC
and is claimed to outperform classical fuzzy modeling techniques.

Advancements in modern machine learning techniques are accel-
erating faster than ever before due to constantly improving computing
power and increased access to vast pools of data. Nowadays, machine
learning algorithms have become deeply entrenched in our lives. They
are now the dominant algorithms used for object recognition in images
and video sequences, natural language processing on smartphones and
predictive analytics in many industries, to name a few [26].

This work showcases how a machine learning technique like
Feedforward Neural Networks (FNN) as well as Deep Feedforward
Neural Networks (DNN), can accurately estimate SOC without the help
of Kalman filters or any other inference methods. Specifically, this work
contributes the following novelties. (1)A DNN can map observable
signals from the battery like voltage, current and temperature directly
to the battery SOC, avoiding additional filters and estimation algo-
rithms like Kalman filters used in traditional systems. (2)The DNN can
self-learn its own weights by using learning algorithms like gradient
descent. This is markedly different than incumbent techniques like
lumped parameter models, equivalent circuit or electrochemical models
which require a great deal of time to hand-engineer and parameterize.
(3)It will be shown that one DNN can learn to estimate SOC at different
ambient temperature conditions. This is beneficial since traditional
estimation techniques must use different models or different look-up
tables for estimation at different ambient temperatures.

After a brief introduction, the second section will discuss the deep
neural networks constructed in this work. In the third section, the ex-
perimental apparatus for the battery testing and data logging is de-
scribed. In the fourth section, the performance of the DNN is tested with
many validation datasets recorded at constant and at varying ambient
temperatures.

2. Deep neural networks for SOC estimation

There are many examples where deep learning architectures have
made significant improvements over conventional algorithms. In 2012,
AlexNet, a deep convolutional neural network won the ImageNet
competition where teams are tasked with classifying over 1 million high
resolution images in 1000 different categories. AlexNet achieved a top-
5 error rate of 15.3% compared to a more traditional model taking
second place with a top-5 error of 26.2% [27]. Recently, Microsoft
Research's deep learning algorithm, called a deep residual network,
won the 2015 ImageNet challenge with an error rate of 3.57% which
even surpasses human level accuracy valued at 5.1% [28].

Traditional machine learning techniques contain no more than one
or two layers of non-linear and linear transformations [29]. With the
advent of faster computational power and an abundance of available
real world data, deeper architectures were investigated which, in many
cases, allowed researchers to make striking improvements in many
applications [27,30–33].

Feedforward neural networks, whose 2-layer and multi-layer DNN ar-
chitectures are shown in Fig. 1, can, in principle, model any non-linear
system by mapping the observables to a desired output. Once trained off-
line, FNN and DNN offer fast computational speeds online since they are
composed of a series of matrix multiplications, as opposed to other strate-
gies which can contain computationally intensive calculations like partial
differentials equations. When FNN and DNN are applied for SOC estimation,
a typical dataset that is used to train the networks is defined by D =

ψ SOC ψ SOC ψ τ SOC τ{( (1), (1) ), ( (2), (2) ), , ( ( ), ( ) )}* * *… , where SOC t( )*

and ψ t( ) are the ideal state-of-charge value and the vector of inputs at time
step t, respectively. The current measurement used to determine the ideal
SOC t( )* is described in more detail in the next section of this paper. The
vector of inputs is defined as ψ t V t T t I t V t( ) [ ( ), ( ), ( ), ( )]avg avg= where
V t( ), T t( ), I t( )avg and V t( )avg represent the voltage, temperature, average
current and average voltage of the battery at time step t. The average cur-
rent and voltage are both calculated over ξ precedent time steps, which
ranged from 50 to 400 time steps. This is not to be confused with the total
dataset time span defined by τ, where ξ τ< . Many different types of inputs
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