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H I G H L I G H T S

• Neural networks are constructed using
data from finite element simulations.

• Neural network classifies design vari-
ables based on specific energy cap-
ability.

• Neural network predicts battery per-
formance with negligible computa-
tional cost.

• Global sensitivity analysis is per-
formed to identify key impact vari-
ables.

• A design map is generated to satisfy
both energy and power requirements.
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A B S T R A C T

Simulation-based battery design encounters the difficulty of high computational cost. This paper presents a
systematic approach based on the artificial neural network to reduce the computational burden of battery design
by several orders-of-magnitude. Two neural networks are constructed using the finite element simulation results
from a thermo-electrochemical model. The first neural network serves as a classifier to predict whether a set of
input variables is physically feasible. The second neural network yields specific energy and specific power. Both
neural networks are validated using extra finite element simulations out of the training data. With a global
sensitivity analysis using the neural network, we quantify the effect of input variables on specific energy and
specific power by evaluating large combinations of input variables, which is computationally prohibitive for
finite element simulations. Among all parameters, the applied C-rate has the largest influence on specific power,
while the electrode thickness and porosity are the dominant factors affecting specific energy. Based on this
finding, we generate a design map that fulfills the requirements of both specific energy and specific power.
Inparticular, we highlight the value of neural network in handling the non-linear, complex and computationally
expensive problem of battery design and optimization.

1. Introduction

Lithium-ion batteries have been widely used in various applications,
ranging from consumer electronics to electric vehicles. To satisfy the
ever-growing demands for higher energy and power capability, dur-
ability and safety of batteries, the design of lithium-ion batteries has
become essential to avoid any unexpected loss of performance. Battery

design based on experiments is time-consuming and expensive. In
contrast, simulation-based design is not only more efficient, but also
provides deeper insights into the mechanisms governing the battery
performance.

Serving as a crucial step for simulation-based design, battery mod-
eling has attracted growing interests. The majority of current battery
models are based on the pseudo two-dimensional (P2D) electrochemical
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model, which is based on the porous electrode theory [1]. The P2D
model has been used to optimize the cathode and anode thickness,
porosity, particle size and many other important electrode parameters
[2–4].

The lithium-ion battery is inherently a multi-physical system. A
representative example showing its multi-physical nature is the inter-
play between electrochemical and thermal behaviors. Heat generated
by electrochemical reactions alters the temperature distribution of the
electrode, which successively affects the electrochemical processes.
Note that many properties of battery components, such as the electro-
lyte diffusivity and conductivity, are strongly related to temperature
[5]. Thus, an accurate simulation often requires a thermal model to be
coupled with the P2D model. In order to appropriately address the
thermal effect, researchers have contributed in thermal property char-
acterization [6], heat generation rate measurement [7] and thermo-
electrochemical coupled modeling [8–10].

Despite the significant progress in the thermo-electrochemical
coupled modeling of lithium-ion batteries, there remains a large gap
between modeling and simulation-based design. The computational
cost can be prohibitively high if a fully-coupled thermo-electrochemical
model is directly applied for battery design. In simulation-based battery
design, thousands of simulations are often required to determine the
optimal design variables. Moreover, the complex non-linear nature of
the battery model may result in convergence problems under some sets
of design variables. Besides, sensitivity of the design variables is also
difficult to analyze due to the very high computational cost. Without
sensitivity analysis the possible reduction of design space through
eliminating insensitive design variables becomes inapplicable.

Recently, artificial neural networks (ANNs, also termed simply as
neural networks (NNs) when there is no ambiguity) has been shown to
solve complex non-linear problems. A notable example is the applica-
tion of deep neural networks in the state-of-the-art artificial intelligence
of Go [11]. Loosely analogous to biological neuron systems, ANN is a
computational model that consists of a large collection of connected
artificial neurons. The neurons and their connections can be trained
with data to represent the relations between inputs and outputs.
Compared to the physical modeling, ANN has advantages in predicting
the output without the knowledge of the exact information of the
modeled system. Another benefit of ANN is its computational effi-
ciency, which enables its deployment in real-time applications. ANN
has been extensively used in computer science, finance, engineering
and many other fields. In the field of battery the ANN approach has
been explored for state-of-charge (SOC) estimation [12,13]. However,
ANN has not received enough attention for battery design. Considering
the potential of ANN for handling highly nonlinear complex problems
with significant computational cost, we propose an approach com-
bining the strengths of physical modeling and ANN.

The objective of this paper is to present a method of applying the
neural network in simulation-based battery design. Using the simula-
tion results from the electrochemical-thermal model as training data,
we obtained two neural networks with satisfactory accuracy. The first

neural network, acted as a classifier, is used to predict whether a set of
input variables is physically feasible. The second neural network is used
to calculate the specific energy and specific power for any given set of
input variables. These two trained neural networks are used to perform
very large-scale Monte Carlo simulations, which are computationally
too expensive to be achievable using the finite element method (FEM).
The analysis of Monte Carlo simulation results provides many im-
portant insights in the battery design. In this paper, we first demon-
strate that this neural network can be used to generate the Ragone plot,
which is an important characteristic curve for electrochemical devices.
Second, a global sensitivity analysis based on the Monte Carlo simula-
tion results provides a sensitivity ranking of the input variables on
specific energy and specific power. This ranking helps identify the
limiting process inside the battery, thus reducing the design space. The
sensitivity analysis can also help understand the influence of input in-
accuracy on the outputs, thus determining the acceptable inaccuracy
range for each input parameter. Finally, we characterize the battery
performance with respect to most sensitive parameters, and generate a
design map to satisfy the requirements of both specific energy and
specific power.

2. Methodology

The first step in constructing a neural network is to determine the
inputs and outputs. We are particularly interested in design variables
that can be controlled in battery manufacturing. As the two most im-
portant battery performance indicators, specific energy and specific
power are selected as outputs. Once the input variables are determined,
we sample representative sets of variables using the design of experi-
ments (DOE) algorithms. Using the sampled variables as inputs, a
thermo-electrochemical finite element model is run to yield specific
energy and specific power. The inputs and associated outputs are uti-
lized to train the neural network. In order to validate the neural net-
work, we compare predictions from the finite element simulation and
the neural network. Once the artificial neural network is constructed
with satisfactory accuracy, Monte Carlo simulations are performed for
further analysis, such as the global sensitivity analysis and optimiza-
tion.

2.1. Electrochemical and thermal modeling

We use the P2D model, as listed in Table 1, to resolve the solid
concentration in the particle domain (the coordinate along particle
radius is denoted as r), and the electrolyte concentration, electrolyte
potential and solid potential in the electrode domain (the coordinate
along electrode thickness is denoted as x). We denote the thickness of
the negative electrode as Ln, the thickness of the separator as Ls, and
the thickness of the positive electrode as L. The negative electrode, the
separator and the positive electrode occupy the regions of

≤ ≤ ≤ ≤ +x L L x L L0 ,n n n s, and + ≤ ≤ + +L L x L L Ln s n s , respec-
tively.

Table 1
Governing equations and boundary conditions of the electrochemical model.
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