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H I G H L I G H T S

• The operation of Battery-Supercapacitor HESS is not restricted by pre-defined rules.

• The control strategy is optimized every minute based on predicted power demand.

• The SOM-PSO method offers faster convergence and shorter optimization time.

• The control strategy can compensate prediction error of predicted power demand.

• The control strategy performs consistently in different scenarios.
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A B S T R A C T

Contrary to Rule-based Controller and Fuzzy Logic Controller, which are usually restricted by pre-defined rules,
the proposed control strategy implements power distribution algorithm to offer higher flexibility to the Battery-
Supercapacitor Hybrid Energy Storage System by introducing a charging threshold and a discharging threshold.
It allows the Hybrid Energy Storage System to be charge/discharged without constraints. The proposed opti-
mization method, which comprises Self-Organizing Map and Particle Swarm Optimization, optimizes the
parameters of power distribution algorithm every minute based on predicted one-hour power demand and su-
percapacitor state-of-charge to mitigate peak demand and short charge-discharge cycles of battery. The proposed
optimization method initializes the initial population of particles within the range of optimal solution instead of
randomizing the particles like the conventional method. This method offers faster convergence and reduces the
optimization time up to 68.97% as compared to conventional method. The simulation results show the proposed
control strategy can compensate the prediction error of prediction model and outperform the Filtration-based
Controller and Particle Swarm Optimization-optimized Fuzzy Logic Controller in different scenarios. Moreover,
it significantly increases the supercapacitor utilization by 7.33 times and reduces the mean absolute rate of
change of battery power and battery peak demand up to 91.94% and 61.36%, respectively.

1. Introduction

Battery-Supercapacitor Hybrid Energy Storage System (HESS) is an
effective approach to minimize the size and stress level of the battery
and to reduce the total capital cost of the system in a standalone pho-
tovoltaic (PV) system [1–4]. Control strategy is an algorithm which
decides and controls the operation of the Battery-Supercapacitor HESS
based on the states of the system. An optimal control strategy can sig-
nificantly improve the performance and the economic viability of the
overall system. A recent review article highlighted that Filtration Based
Controller (FBC) [5–10], Rule-Based Controller (RBC) [11–17], and
Fuzzy Logic Controller (FLC) [18–21] are the most common control

strategies for HESS. In Ref. [9], the authors proposed low pass filter
(LPF) based FBC for DC-link voltage stabilization in a PV-based DC grid.
The authors in Ref. [10] implemented a LPF based FBC with an adap-
tive rate limiter to mitigate the high charge/discharge rate of the bat-
tery. The control strategy of both [9] and [10] neglected the state-of-
charge (SOC) of the energy storage systems. In fact, the supercapacitor
in FBC is commonly underutilized and ineffective in minimizing the
peak power demand of the battery as it can only process the frequency
of the power demand [22].

In the common approach, most control strategies tend to charge the
HESS only when the power generation of renewable energy source is
higher than load demand [11,12,23–28]. The authors in Ref. [29]
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proposed a RBC that prioritized the charging of battery over super-
capacitor when the wind power output is higher than load demand. In
Ref. [13], the charging/discharging operation of supercapacitor is re-
stricted by pre-defined thresholds. In a recent literature [30], the su-
percapacitor is implemented as the primary storage to supply for power
demand while the battery recharges the supercapacitor when the SOC
of supercapacitor (SOCSC) is below a pre-defined thresholds [30]. These
pre-defined thresholds and rules restrain the potential of HESS as the
operating conditions of the system are constantly varying. The control
strategy with rigid parameters can fail to fulfil the desired objectives in
certain unpredicted events.

With the capability of predicting electrical load [31–35] and solar
irradiance [36–39] using machine learning algorithms, the prediction
output can be integrated with the control strategies to achieve optimal
energy management [40,41]. However, accurate prediction of PV
output and load profile are challenging due to the randomness and
noisy disturbance. In Ref. [34], the authors evaluated some popular
machine learning methods for one-hour ahead building energy con-
sumption prediction [34]. The results indicated that the Root Mean
Square Error (RMSE) for the prediction error of the machine learning
methods are ranging from 59.1812W to 89.9583W. The prediction task

is even more difficult in standalone PV system as the PV output is
strongly dependent on the weather condition. In Ref. [42], the authors
evaluated the accuracy of hourly PV output power prediction using
artificial intelligence methods, namely Support Vector Regression
(SVR), Artificial Neural Network (ANN), and Extreme Learning Ma-
chine (ELM) [42]. The results highlighted that the RMSE for the pre-
diction accuracy of the presented methods are ranging from 55.32W to
145.38W.

To effectively utilize the information of predicted power demand,
several studies employ evolutionary algorithm (EA), such as Genetic
Algorithm (GA) [19] and Particle Swarm Optimization (PSO) [25], to
optimize the control strategy with the aim to solve multi-objectives
optimization problems. The authors in Ref. [18] optimized the mem-
bership functions (MF) of FLC using WCA to minimize the Loss of Power
Supply Possibility and Operation & Maintenance cost in a PV/Wind
power system with Battery-Hydrogen Storage System HESS [18]. The
computational efficiency of the optimization algorithm in solving op-
timization problem with 37 dimensions is not presented in Ref. [18]. EA
can be ineffective when applied to large and complex problems such as
problem with high dimensionality [43]. In fact, EA with faster con-
vergence, lower computational, and better reliability are highly desired

Nomenclature

|ΔPbatt| Absolute value of the rate of change of battery power (W)
|ΔPbatt|mean Mean absolute power rate (W s−1)
|ΔPbatt|total Total absolute power rate (W s−1)
|Ah|SC The absolute value of the accumulated ampere-hours of

supercapacitor (Ah)
ANN Artificial neural network
dip Power deficit between Ppv and Pload (W)
dPHF High frequency components of dP (W)
dPLF Low frequency components of dP (W)
dPLF_prediction Predicted one-hour ahead power demand of HESS (W)
dPLF_predictionmax Minimum point of dPLF_Prediction (W)
dPLF_predictionmin Maximum point of dPLF_Prediction (W)
EA Evolutionary algorithm
ELM Extreme learning machine
f1(x) Fitness function 1
f2(x) Fitness function 2
FBC Filtration based controller
FLC Fuzzy logic controller
GA Genetic algorithm
gbest Global best
HESS Hybrid energy storage system
Itmax Maximum number of iterations to obtain the optimal so-

lution
Ittotal Total number of iterations
L(t) Learning rate at t
LPF Low pass filter
M Set of Neurons in the input space
MAF Moving average filter
mc Winning neuron
MF Membership function
mi Neuron number i
n Number of dimensions
Pbatt Battery power (W)
Pbatt_max Maximum point of battery power (W)
Pbatt_min Minimum point of battery power (W)
Pbatt_peak Battery peak power (W)
Pbest Personal best
PHF High frequency component (W)
Pload Load power demand (W)
PPV Power Generation of PV (W)

PSC Supercapacitor power (W)
PSC′ Supercapacitor power after Power Conversion (W)
PSC_PDA Reference supercapacitor power produced by Power

Distribution Algorithm (W)
PSC_ref Reference supercapacitor power (W)
PSC_ref Reference power to be shared by supercapacitor (W)
PSC_ref' PSC_ref before Over-charged/discharged Protection (W)
PSO Particle Swarm Optimization
PV Photovoltaic
Q Total number of Neuron in the input space
RBC Rule Based Controller
RMSE Root Mean Squared Error
S Set of home and neighbour neurons
S0 Home neuron
Sj Neighbour neuron j
SOC State of charge (%)
SOCSC State of charge of supercapacitor (%)
SOM Self-Organizing Map
SVR Support Vector Regression
TC Charging threshold (W)
TC_1 Charging threshold 1 (W)
TC_2 Charging threshold 2 (W)
TC_3 Charging threshold 3 (W)
TC_range Range of optimal charging threshold (W)
TCk Set of optimal TC (W)
Td Discharging threshold (W)
Td_1 Discharging threshold 1 (W)
Td_2 Discharging threshold 2 (W)
Td_range Range of optimal discharging threshold (W)
Tdk Set of Optimal Td
Tit Average optimization time per iteration (s)
ToptimizationTotal optimization time (s)
TS Moving sampling time window (s)
Vi Input vector
Vi(t) Input vector at t
WCA Water Cycle Algorithm
β Multiplier
ΔSOCSC Variation of SOCSC (%)
λ Time constant (total epoch)
ξ Input vector
σ(t) Area of neighbourhood
σ0 Size of the neighbourhood at time t0
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