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H I G H L I G H T S

• An equivalent circuit model is built based on a model parameter regulator.

• An AUKF based on a noise statistics estimator and parameter regulator is developed.

• The AUKF method is applied to estimate SOC of a series-connected battery system.

• The SOC estimation accuracy is validated by simulations and experimental results.
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A B S T R A C T

Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge
(SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using
model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this
problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model para-
meter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent
circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell
variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise
statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and
effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model
and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed
method shows the highest SOC estimation accuracy.

1. Introduction

Renewable energy sources (RESs), such as wind energy and photo-
voltaic energy, are developing rapidly around the world [1]. However,
owing to the intermittent and fluctuant nature of these sources, their
large-scale integration into the grid can lead to voltage and frequency
fluctuation of existing power networks [2]. Battery energy storage
systems (BESSs) are widely regarded as an effective solution to in-
tegrate large-scale RESs into the grid [3]. They can smooth the fluctu-
ating power of the RESs and balance the active and reactive power of
the grid when the RESs are integrated into the grid. There are many
kinds of batteries according to the commercial application [4], in-
cluding lead-acid, nickel-cadmium, lithium-ion, vanadium redox flow,

and sodium-sulfur batteries. Compared to lead-acid and nickel-cad-
mium batteries, lithium-ion batteries have become the preferred choice
in BESSs because of their higher power and energy densities, lower self-
discharge rate, and longer cycles [5]. To meet higher power and ca-
pacity requirements, BESSs conventionally consist of thousands of low-
voltage and low-power lithium-ion batteries connected in series and/or
parallel. A well-designed battery management system (BMS) is required
to enhance the reliability, efficiency, and lifetime of the BESSs. As one
of the core indicators of the BMS, state of charge (SOC) can illustrate
the available capacity of the BESSs and can enhance other functions for
the BESSs, such as reliability and safety [6]. However, accurate esti-
mation of SOC in the BESS application is challenging because a battery
is a dynamic nonlinear and complex electrochemical system and the
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SOC is not easily and directly measured.
Methods to improve battery SOC estimation accuracy have recently

been presented. The coulomb counting (ampere-hour counting) method
integrates the currents flowing into and out of the batteries over time to
obtain SOC estimation. This method is easy to implement in practical
use. However, as an open-loop approach, it is not accurate because it
needs prior knowledge of the initial SOC and easily suffers from mea-
surement errors and accumulated errors [7]. The open-circuit voltage
(OCV) method is another approach that is extensively used in-
dependently or with other approaches [8]. However, this method re-
quires a long time to measure terminal voltage and there is often a small
voltage variation of lithium-ion batteries around the battery nominal
voltage, which degrades the SOC estimation accuracy. The electro-
chemical impedance spectroscopy (EIS) method can be applied to ac-
curately decipher the chemical and physical processes that take place in
a battery, but it is too complicated to estimate SOC for online appli-
cations due to the requirement of Nyquist plots [9].

Recently, some advanced algorithms have been used to accurately
estimate the SOC. The advanced algorithms, such as the fuzzy logic
method [10], artificial neural networks [11], support vector machine
[12], and sliding mode observers [13], demonstrate improved SOC
estimation precision without demanding exact knowledge of the battery
dynamics. However, it is difficult to use these advanced methods online
because they require extensive samples, complex algorithms, and ex-
tensive computation [14].

Amongst others, the methods based on equivalent circuit model
(ECM) and closed-loop SOC estimation iteration process have been
developed and have proved to be accurate and implementable for
battery SOC estimation. For these methods, the battery charging and
discharging characteristics are predicted by the ECM, while the SOC is
estimated online in the iteration process of different adaptive filters,
such as Kalman filter (KF) [15], extended Kalman filter (EKF) [16], and
unscented Kalman filter (UKF) [17]. The KF is a widely used adaptive
filter for linear models, but is not suitable for nonlinear models. As an
extended method of the KF, the EKF can be used in more complex and
nonlinear models. However, because the EKF requires a linearized ap-
proximation of the nonlinear function using first-order or second-order
terms of Taylor's formula and a computation of the Jacobian matrix, it
is also not very accurate. To overcome these drawbacks, the UKF is
presented as a sigma-point KF (SPKF) method for SOC estimation [18].
The UKF based on unscented transform not only does not require the
calculation of the Jacobian matrix, but has a higher SOC estimation
accuracy than the EKF [19].

However, all KF methods suppose that the battery noise statistics,
such as model and measurement noise covariances, are accurate. That is
to say, SOC estimation based on the KFs described above will be un-
stable or even divergent and excessively slow to adapt if the noise
statistics are inaccurate [20]. To deal with these problems, the adaptive
Kalman filter (AKF) [21], the adaptive extended Kalman filter (AEKF)
[22], and the adaptive sigma-point Kalman filter (ASPKF) [23] are used
to estimate noise statistics online, but at the cost of additional com-
putation. A novel adaptive H-infinity filter (AHIF) based on covariance
matching technique is also proposed as another solution [24]. Contrary
to the KFs, the AHIF does not require accurate knowledge of the model
and measurement noise covariances. However, due to the existing
steady-state estimation errors of the covariance matching method, the
battery SOC estimation accuracy is still degraded and is unstable using
AHIF [25].

Moreover, the other challenge in estimating model and measure-
ment noises is that these noises should be assumed to be Gaussian white
noises with zero mean value. In real applications, this assumption is
difficult to be realized because the noises that suffer from environ-
mental disturbances may illustrate a biased distribution, which has a
negative effect on the accuracy and convergence behavior of SOC es-
timation using KFs [26]. To resolve the problem, a particle filter (PF)
[27] and an unscented particle filter (UPF) [28] are applied to estimate

battery SOC. However, due to large computation requirements and
memory consumption (e.g., by a factor of 50 compared to the UKF as
shown in Ref. [29]), these filters are not suitable for online SOC esti-
mation in real applications, especially for series-connected battery
systems.

The SOC estimation accuracy of battery system using the above
methods can be degraded by focusing mainly on the cells and ne-
glecting the cell-to-cell variation in battery system. In general, to meet
the requirements of high capacity and high voltage in the BESSs, the
battery system is usually composed of thousands of cells connected in
series and/or in parallel. The performance of series-connected battery
system is mainly tied to the state of the weakest cell. For example, in the
charging process, the weakest cell will reach the maximum charge ca-
pacity before the other cells in spite of whether the battery system
reaches its upper cut-off voltage. Moreover, in the discharging process,
the weakest cell will first reach the minimum discharge capacity even if
the battery system reaches its lower cut-off voltage. As a result, the
battery system model and its SOC estimation precision are degraded
when cell inconsistency is ignored [30].

Recently, much effort has been made to improve the SOC estimation
precision of series- and/or parallel-connected battery system. Plett [31]
presented a method called “bar-delta filtering” that employs a more
sophisticated SPKF-based method to estimate the pack-average SOC and
applies a simplified EKF-based method to estimate each cell's SOC. It is
assumed that the difference between the pack-average SOC and the SOC
of each cell is small and this difference is estimated for each cell. Si-
milarly, Roscher at al [32]. developed a Luenberger observer to esti-
mate the pack-average SOC, and the differences between the pack-
average SOC and the SOC of each cell were estimated via some simple
calculations. Dai at al [33]. employed a sophisticated EKF to estimate
the pack-average SOC, and the differences between the pack-average
SOC and the SOC of each cell were estimated by a single-state EKF. As a
result, this method shows sufficient SOC estimation accuracy, but it is
not suitable for use in actual vehicular operation owing to its high
computation cost. To estimate accurately the SOC of a battery system of
multiple cells in series, a method based on minimal cell load voltage of
the battery system was proposed [34]. The battery system SOC can be
estimated dynamically with a sophisticated EKF. One of the limitations
of this method is that it ignores the problem of overcharge from the cell
with maximum terminal voltage. More importantly, the SOC estimation
error will be larger if the cell with minimal load voltage is not the one
with the lowest capacity. In Refs. [35,36], a method based on a
screening process was developed to build an ECM for a lithium-ion
battery system in series and improve the model-based SOC estimation
accuracy using EKF. Through the screening process, including capacity
and resistance screening, the proposed ECM of the battery system can
be easily expressed from a single-cell model and the accuracy of the
SOC estimation is improved. However, this method also has limitations:
(i) the acceptance proportion of the tested cells will be reduced because
most of the cells have been eliminated in the screening process, (ii) the
key factor for improving the acceptance proportion is not discussed,
such as the variance threshold of the cells, and (iii) SOC estimation
using EKF is vulnerable to divergence owing to inaccurate noise sta-
tistics. To overcome these drawbacks, Xiong at al [30]. employed a
method based on a filtering process to build the ECM for a battery
system in series and introduced an AEKF-based SOC estimator to im-
prove estimation accuracy. This method can ensure the SOC estimation
accuracy for each cell and battery system, however, it also has limita-
tions: (i) the cell-to-cell variations are not discussed in the battery
system model although they influence the accuracy of the battery
system model, and (ii) SOC estimation based on the AEKF will be un-
stable or even divergent when the noise statistics are inaccurate or
unknown.

This study improves SOC estimation accuracy of a lithium-ion
series-connected battery system two ways. First, a battery system model
based on a model parameter regulator, which exhibits the influence of
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