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H I G H L I G H T S

• An economic model predictive control is formulated for battery power prediction.

• A high-fidelity battery model is employed to capture the electrothermal dynamics.

• Constraints of current, voltage, temperature, and SOC are explicitly considered.

• Effects of temperature constraint, prediction horizon, and model accuracy are studied.
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A B S T R A C T

Technical challenges facing determination of battery available power arise from its complicated nonlinear dy-
namics, input and output constraints, and inaccessible internal states. Available solutions often resorted to open-
loop prediction with simplified battery models or linear control algorithms. To resolve these challenges si-
multaneously, this paper formulates an economic nonlinear model predictive control to forecast a battery's state-
of-power. This algorithm is built upon a high-fidelity model that captures nonlinear coupled electrical and
thermal dynamics of a lithium-ion battery. Constraints imposed on current, voltage, temperature, and state-of-
charge are then taken into account in a systematic fashion. Illustrative results from several different tests over a
wide range of conditions demonstrate that the proposed approach is capable of accurately predicting the power
capability with the error less than 0.2% while protecting the battery from undesirable reactions. Furthermore,
the effects of temperature constraints, prediction horizon, and model accuracy are quantitatively examined. The
proposed power prediction algorithm is general and then can be equally applicable to different lithium-ion
batteries and cell chemistries where proper mathematical models exist.

1. Introduction

A revolutionary paradigm shift from internal combustion engine
vehicles towards electrified ones seems indisputable in the near future
[1,2], eventually leading to a fossil-fuel-free transportation sector.
Achieving such a target relies heavily on continued advance of battery
technology, since the battery system is still the most expensive and
perhaps the least understood vehicle component [3]. Although re-
searchers from the material and chemistry are showing promising re-
sults, e.g., in the development of polymer electrolyte materials [4–6],
the mass production of electric vehicles with the technology available
in the near future requires tools for safe, efficient, and health-conscious
operation. Unlike its conventional counterparts, the battery represents a
limiting factor in energy density, “refueling” time, and life cycle. At the

same time, the available battery systems are often designed con-
servatively, resulting in that 20–50% of capacity and power capability
remain underutilized [7]. Therefore, it is of great importance to develop
advanced battery management systems (BMSs), through which bat-
teries can be used closer to their physical limits but with guaranteed
safety and lifetime.

Battery management requires accurate knowledge of state-of-power
(SoP), indicative of the peak capability to supply or absorb electric
energy in a short time period [8,9]. For hybrid electric vehicles (HEVs)
and plug-in HEVs, such state information is used for determination of
power split and for regenerative braking, so as to improve vehicle dy-
namic performance and to optimize energy-efficiency and tailpipe
emissions [10,11]. For the battery itself, knowing the maximum
available power at some future time period can potentially also slow
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down its degradation process; the charge operation may be made faster
under safety promise, for example through the algorithms proposed in
Refs. [12,13]. Therefore, predicting the SoP in real-time is one of the
most important BMS functionalities and has consequently attracted
considerable research efforts.

Currently, characteristic maps are established offline relating the
SoP to battery state variables such as state-of-charge (SoC) and tem-
perature, and power pulse parameters [14]. Although these static maps
can readily be implemented, they lack the necessary adaptation to the
varying performance of cells, caused by aging and past and current
operating conditions. In light of this, online SoP prediction/estimation
techniques based on mathematical battery models have been explored
and exploited. Comparative studies on different models of lithium-ion
batteries can be found in Refs. [15,16], for example. However, the
technical challenge in this task initially stems from complicated battery
models that have multiple state variables being nonlinearly coupled
with each other. Furthermore, to protect battery health and safety
during cycling, the SoP prediction problem needs to satisfy constraints
on current, voltage, and temperature. In addition, battery internal
states, such as SoC and core temperature, can significantly influence the
available power but are usually unmeasurable in onboard applications
[17,18].

Model-based power estimation/prediction for lithium-ion batteries
has previously been analyzed. By using a simplified equivalent circuit
model, an analytical expression of battery SoP was derived in Refs.
[19,20]. Based on a linear-parameter-varying battery model, optimi-
zation-based approaches have been conceived to assess the power state
on various operating conditions [21,22]. To address inevitable sensor
noise, extended Kalman filter [23–25], unscented Kalman filter [26,27],
and particle filter [28], synthesized from equivalent circuit models,
have been adopted to compute the maximum admissible power. Also,
joint/dual estimation algorithms for SoP and other unmeasurable states
have been carried out [29,30]. A comprehensive survey of established
methods for battery power estimation can be found in the recent review
article [31]. Common to the referred works is that current, voltage,
and/or SoC constraints were imposed, but not the temperature. In
consideration of its importance in battery lifetime and safety, a tem-
perature constraint was included for predicting the power capability in
Ref. [32]. One could argue that in these available contributions, the
input and state constraints have not been systematically and optimally
addressed. Additionally, the coupled nonlinear electrical and thermal
dynamics have been partially or fully ignored, linearized, or decoupled.
The consequently reduced model fidelity can potentially degrade the
prediction capability of the associated algorithms and may lead to
premature battery degradation and safety issues. In Refs. [20,33], it was
shown that the mentioned analytical solution could be reformulated as
a proportional-integral (PI) controlled feedback system with very strong
robustness properties. Following this line of thought then feedback
control approaches based on more elaborate models can be sought.

Model predictive control (MPC) or receding horizon control (RHC)
is a model-based control paradigm in which the control action at each
sampling instant is obtained by solving a finite-horizon optimization
problem in real-time. The attractive attributes of MPC are its ability to
systematically handle input and state constraints, multiple variables,
and nonlinearities, making it possible to deal with complex systems and
operate them within given boundaries. Considerable success has been
achieved with the deployment of MPC in widespread applications, in-
cluding recent examples in energy management of batteries [34,35]
and HEVs [36]. Within the MPC framework, economic MPC (EMPC)
provides a direct means to optimize a dynamic economic objective like
profitability, return on capital, efficiency of operation, and cost-cutting.
As compared to tracking MPC, where deviations of the system inputs
and states from some references often are penalized, EMPC can po-
tentially offer superior closed-loop performance and get rid of laborious
tuning of weights. A thorough exposition of EMPC theory and techni-
ques can be found in Ref. [37]. In this regard, the EMPC scheme can be

a good candidate to solve the power assessment problem.
This paper proposes a new prediction algorithm for the power

capability of lithium-ion batteries. Specifically, three original con-
tributions are made to the relevant literature. First, the power predic-
tion problem is formulated in the framework of economic nonlinear
model predictive control. The maximum power can then be adopted
directly in the objective function, input/state constraints considered
explicitly, and model nonlinearities handled in a natural way. Second,
the proposed predictor is deployed for battery fast charging and for
charge/discharge management in the presence of dynamic loads.
Finally, the effects of prediction horizon, temperature constraint, and
model fidelity are studied quantitatively.

The remainder of this paper is organized as follows. A general
problem formulation for power capability prediction is presented in
Section 2. The EMPC formulation and its ingredients are described in
Section 3. The proposed algorithm is then numerically implemented in
Section 4, followed by a concluding summary in Section 5.

2. General problem statement

In the course of charge/discharge operation, the power capability of
a lithium-ion battery is influenced by various factors, such as SoC, SoH,
voltage, cell temperature, and ambient temperature. These factors are
typically interrelated during lithium-ion intercalation/de-intercalation
process, diffusive transport, and electrochemical reactions. In response
to changes in battery ambient environment and internal dynamics, the
maximum available power will therefore vary in the time domain.
Knowing the SoP available in the near future, one can safely operate the
battery around its power limits, giving enhanced performance and
prolonged battery lifetime.

The available power of a battery cell is defined as the product of
current and voltage. Its current and voltage are related through the
dynamic battery system and are usually considered as the system input
and output, respectively. This means that, for a given current, the
voltage can be derived as an output of a dynamic battery model.

Based on the above discussions, the general problem of online
battery SoP prediction can be stated as:

Problem Statement. The prediction of SoP for a lithium-ion battery is
to determine the input current on the future time interval, +t t T[ , ], that
gives the maximum average power while the transient current, voltage, SoC,
and temperature all stay within their allowable operating ranges, given some
in-situ measurements of current, voltage, and surface temperature at the
current time, t.

The above problem statement for SoP prediction can be mathema-
tically formulated as a constrained finite-horizon optimization problem

∫ +
I τ V τ dτmax ( ( ), ( ))

I τ t

t T

( )
P

(1a)

=s t x τ F x τ I τ p. . ˙ ( ) ( ( ), ( ), ) (1b)

=V τ H x τ I τ p( ) ( ( ), ( ), ) (1c)

�∈ ⊂I τ τ( ) ( ) (1d)

∈ ⊂V τ τ( ) ( )V (1e)

∈ ⊂x τ τ( ) ( ) nX (1f)

∀ ∈ +τ t t T[ , ], where I V, denote the input current and terminal vol-
tage; x represents a vector of n state variables; p is a vector of para-
meters in the battery system; ⋅ ⋅F H( ), ( ) are nonlinear functions; and � ,
V , and X define the constraints.

The objective function, (1a), is established to directly maximize the
available power on the prediction horizon T with the definition of

=t I t V t( ) ( ) ( ).P (2)

The optimization variable, I τ( ) for ∈ +τ t t T[ , ], is the current, and
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