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H I G H L I G H T S

• Critical examination on the validity of Stoney equation in film electrodes.

• Effects of concentration dependent elasticity to in-situ stress measurements.

• Effects of finite deformation to in-situ stress measurements.

• A robust electrochemical-mechanical coupling FE procedure.
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A B S T R A C T

During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the cur-
vature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the
assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b)
small deformation holds. Here, we demonstrate that the change in elastic properties can influence the mea-
surement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation
during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-
deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film
electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the
Stoney-equation for in-situ stress measurements of thin film electrodes.

1. Introduction

Battery performance is largely compromised by the stress in active
cathode and anode particles because of large volume change associated
with the diffusion of lithium–ions during battery charge/discharge cy-
cles [1–3]. Understanding battery degradation has stimulated a
growing interest in studying the electrochemical-mechanical coupled
fields and the subsequent stress variation during lithiation and de-
lithiation. Many researchers are focusing on Si-based and Sn-based
anodes because of their high charge capacities and relatively low
density. However, high capacities usually are associated with huge
volume expansion and high stress, causing poor cycle life. A robust
numerical implementation of diffusion-finite deformation in strongly
coupled phenomena is, therefore, necessary for simulating large strain
(∼300%) in silicon- or tin-based electrodes for lithium ion battery
applications.

It is generally agreed that the lithiation and delithiation in batteries
involve electrochemical-mechanical coupling. Taking Si as an example,
the electrochemical lithiation of crystalline Si exhibits complicated
structural changes [4], such as phase transition and volume changes
[5]. As a result, significant stress change occurs, which has been related
to the performance of the battery. Given the experimental difficulties in
quantifying the coupling effects, intensive endeavors have been made in
developing numerical methods in the past decade to capture the elec-
trochemical-mechanical processes in batteries [6–12]. Anand et al.
(2012) [13] has used a Cahn–Hilliard–type theory for species diffusion
coupled with large elastic–plastic deformations.

When applying the Stoney equation for stress measurements
[14,15], the accuracy is contingent upon the assumption that the elastic
and plastic properties of the electrode remain unchanged during li-
thiation. However, there are obvious changes in the mechanical prop-
erties in the process of lithiation and delithiation of electrodes [16–18].
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In this paper, we demonstrate via finite element method based com-
putations how the variation of elastic properties could influence the
stress measurement and the stress-capacity relationship in thin film
battery electrodes. We first present in Sec. 2 the numerical im-
plementation of diffusion-finite deformation strongly coupled pro-
blems. We report the curvature response as a function of lithium con-
centration-dependent elastic modulus and discuss the limitation of the
Stoney equation for stress measurements in thin film electrodes in Sec.
3. We conclude in Sec. 4 with final remarks.

2. The finite element formula

Here we introduce the diffusion-induced finite deformation coupled
equations for modeling the electrode's finite deformation in the process
of charge or discharge. Previously, many researchers have demon-
strated that there exists a stress–capacity hysteresis in electrode mate-
rials, and the irreversible deformation is greater than the elastic de-
formation [17–20]. We introduce, therefore, a large inelastic
deformation theory to our diffusion-finite deformation fully coupled
theory, which, we believe, can be applied to many electrode materials.
We discuss, in the following, diffusion process and finite deformation
process separately.

2.1. Diffusion process for the finite deformation

At any given time t, the lithium ion concentration xϕ t( , ) at a ma-
terial point x in the electrode structure (v) is governed by the diffusion
equation [21].

∂
∂
+ ∇⋅ =J

ϕ
t
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where∇ = ∂
∂xi

is the gradient relative to current position xi [22]. Hence
the initial configuration X coincides with the current one x at =t 0,
i.e., = =X x t( 0)i i , and the subscript i runs from x to z in the Cartesian
coordinate system. The boundary condition is given as
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Here Js is the component of surface flux, n is the surface normal,
and Γ1 and Γ2 represent the surface of the volume v. Here, the galva-
nostatic current boundary condition Js is related to the current density
is via =Js i

F

s
[23], and F is the Faraday constant.

There are several models for the effect of stress on lithium ion flow.
The commonly used one expresses the flux, J , a function of the gradient
of a stress-dependent chemical potential μ (e.g. [13,22,24–27])
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where xD ϕ( , ) is the diffusivity depending on concentrations and cur-
rent positions, R is the gas constant and T is the absolute temperature.
Note that different groups may use slightly different formula of μ al-
though the same factors were taken into account (e.g. [13,22,27]). Eqn.
(1c) reflects the influence of stress on concentration and vice versa. As
the exact dependence of μ on σ remains debatable, we adopt a simple
form (e.g. [24–27])

= + −xμ ϕ σ t μ RTln
ϕ

ϕ
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h0 (1d)

where is the referential potential, ϕmax is the maximum lithium con-
centration, Ω is the lithium ions partial molar volume and σh is the
hydrostatic stress, i.e., + +σ σ σ( )/3xx yy zz . The second term represents
an entropic contribution to the free-energy, while the third term is the
work done by the applied stress. Combining Eqns. (1c) and (1d), the
flux equation can be rewritten as

= − ∇ + ∇J
x

x
xD ϕ

ϕ
ϕ t

D ϕ
RT

σ
( , )

( , )
( , )Ω

h
(2)

We consider a linear dependence of diffusivity on concentration and
consider isotropic diffusion =xD ϕ D ϕ( , ) 0 .

In general, the concentration ϕ is associated with compound phase
A Bψ in the electrode where A and B indicate the lithium and the anode
electrode material respectively, and the subscript ψ indicates the li-
thium fraction ranging from 0 to ψmax. Its connection with ϕ is defined
by

=ϕ
ψ

V N
,

ψ a (3)

whereVψ is the volume of the compound A Bψ and is a function of ψ, and
Na is Avogadro's number. Taking lithium-silicon battery system as an
example, the volume of the compound Li Siψ is [28,29].
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and the maximum lithium fraction is =ψ 4.4max (Li Si4.4 [30]). For nu-
merical convenience, we consider ψ as a continuous variable. We write
the diffusion equation in terms of ψ, and Eqn. (1a) is given as
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where ′ = ∂
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ψ
ψ , and the boundary conditions are
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for prescribed concentration and ion flux, respectively. The flux equa-
tion (Eqn. (2)) is then written as
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According to eqn. (5a) and eqn. (5b), the variational form δWd of the
above diffusion equation is given as
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where v and s are the volume and the surface of the deformed body,
respectively. The differentiation of δWd is
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three terms on the RHS of eqn. (7) are associated with diffusion, and the
last one is the finite deformation-induced stiffness matrixes.

2.2. The finite deformation problems for electrodes

Since large volume changes occur in the negative electrode in high
capacity batteries, and the Cauchy stress is affected by rigid-body ro-
tation (not frame invariant), an objective stress rate with respect to the
logarithm strain rate is desired. The objective stress rate can be ac-
quired by the Jaumann rate [31] as

= + −σ σ σ W W σ˙ ˙ij
J

ij ik kj ik kj (8)
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