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H I G H L I G H T S

• An adaptive power limit algorithm is developed.

• Stability analysis of the adaptive algorithm in presence of communication delays.

• Extensive lab validation in temperatures between −20 and + 25 °C.

• 5 s power estimation accuracy is within ± 2%.
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A B S T R A C T

Efficient control of electrified powertrains requires accurate estimation of the power capability of the battery for
the next few seconds into the future. When implemented in a vehicle, the power estimation is part of a control
loop that may contain several networked controllers which introduces time delays that may jeopardize stability.
In this article, we present and evaluate an adaptive power estimation method that robustly can handle uncertain
health status and time delays. A theoretical analysis shows that stability of the closed loop system can be lost if
the resistance of the model is under-estimated. Stability can, however, be restored by filtering the estimated
power at the expense of slightly reduced bandwidth of the signal.

The adaptive algorithm is experimentally validated in lab tests using an aged lithium-ion cell subject to a high
power load profile in temperatures from−20 to +25 °C. The upper voltage limit was set to 4.15 V and the lower
voltage limit to 2.6 V, where significant non-linearities are occurring and the validity of the model is limited.
After an initial transient when the model parameters are adapted, the prediction accuracy is within ± 2% of the
actually available power.

1. Introduction

The energy management system (EMS) of a plug-in hybrid electric
vehicle (PHEV) uses information about the power available from the
electric system to optimize efficiency, performance, and driving ex-
perience [1–3]. To avoid premature ageing, the battery power must be
limited by specifying regions of safe use in terms of limits on voltage,
current, and temperature. Power capability of the battery cannot be
measured directly and the battery management system (BMS) must
therefore estimate the power available for the next few seconds into the
future [4]. This can be achieved using model-based techniques where
the current–voltage characteristics are used to predict the voltage re-
sponse to a given constant current. A major difficulty in this task is that
the characteristics of the battery changes considerably with both

operating conditions and age [5–7]. However, on-line parameter esti-
mation techniques such as recursive least squares or Kalman filter can
be used to maintain accuracy in the power estimation, by keeping the
battery model updated over time.

State-of-power (SoP) can be divided into two separate parts; (i)
predicting the maximum charge and discharge power that is available
without violating constraints on voltage, current, etc., and (ii) limiting
the power if the request of the vehicle exceeds the available power. A
typical set-up in a vehicle application is shown if Fig. 1. The BMS
measures current, voltage and temperature of the battery cells and es-
timates the maximum power that the battery pack can deliver. This is
sent over the controller area network (CAN) to the EMS. The EMS
collects power requests from all subsystems connected to the battery
and communicates how much power each component may use. The
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consumers (here represented by the power controller) then actuates the
power out-take from the battery. In the limiting case, closed-loop
control of the power containing several networked controllers is
formed. As will be shown later in this article, a combination of com-
munication delays and uncertain model parameters may impact stabi-
lity of the system. Similar observations are also presented in Ref. [8].

Adaptive power estimation has been analysed before, see for in-
stance [9,10] for two recent review articles on the subject of power
prediction. In summary, different approaches have been considered,
such as:

• Analytic expressions based on an equivalent circuit model (see e.g.
Refs. [11,12])

• Kalman filter based estimation (see Refs. [13–15])

• Particle filter based estimation (see Ref. [16])

• Neural networks (see Ref. [17])

This article extends the work in Ref. [11], where an analytical
calculation of the battery SoP was presented. The method was analysed
for stability and performance in simulations, and the main contribu-
tions in this article are (i) stability analysis of adaptive maximum
(minimum) current estimation in the presence of parametric un-
certainty and communication delays; and (ii) experimental validation
in battery lab using an aged cell in cold temperatures.

The article is structured as follows; in Section 3 the models and
algorithms are introduced. Section 4 presents a robustness analysis to-
gether with an extension to the power limit algorithm that handles
parameter uncertainty. In Section 5, a laboratory validation of the
adaptive system is presented. Section 6 summarizes the results.

2. Nomenclature

In Table 1, the notation used in this article is listed.

3. Adaptive state-of-power algorithm

An adaptive state-of-power algorithm consists of three major parts,
(i) a battery model, (ii) parameter estimator, and (iii) a prediction of the
power that can be delivered or absorbed without violating battery
constraints. This section presents these parts by reviewing some pre-
vious results.

3.1. Battery model

In battery estimation applications, equivalent circuit models are
often used to predict voltage as a function of current (see e.g. Refs.
[5,18,19]). The prediction horizons of interest for the SoP considered
here are in the range of 1–5 s, which means that slower dynamics of the
cell can be discarded. Here, a first-order equivalent circuit model,
where the voltage v1 models diffusion effects (see Fig. 2), is considered
suitable for the purpose.

In continuous time, the equivalent circuit model is described by

= − +v t
T

v t
C

i t˙ ( ) 1 ( ) 1 ( )1 1 (1)

= + +v t v z t v t R i t( ) ( ( )) ( ) ( ),oc soc 1 0 (2)

where zsoc is the state-of-charge, voc is the open circuit voltage, =T R C1

is the time constant, and =v dv dt˙ /1 1 . The parameters ∈ +R R C, ,0 1 � and
variables ∈v v i, ,1 � are defined in Fig. 2. The sign convention is such

that a positive current (power) charges the battery.

3.2. Recursive parameter estimation

Since the battery characteristics change significantly with both op-
erating conditions and age, it is common to include some kind of
parameter adaptation in the algorithms of the BMS. There are several
alternatives to this, both in continuous time [12,20], and in discrete
time [21–23].

For parameter estimation, models are often formulated in regressor
form, i.e.

= +y t φ t θ t e t( ) ( ) ( ) ( ),T

where ∈y � is the output, ∈φ n� is the regression vector, ∈θ n� is the
parameter vector, ∈e � is a noise term, and n is the number of

Fig. 1. Typical controller configuration in vehicle application.

Table 1
Nomenclature.

Symbol Description

v Cell voltage
i Current
p Power
v1 Voltage over RC pair in equivalent circuit model
T Time constant of RC pair in equivalent circuit model
C Capacitance in equivalent circuit model
R0, R1 Resistances in equivalent circuit model
zsoc State of charge
voc Open circuit voltage function
y Output in linear regression model
φ Regression vector in linear regression model
θ Parameter vector in linear regression model
e Noise term

tΔ Prediction horizon of SoP algorithm
vlim Voltage limit used in SoP algorithm, either vmax or vmin
vmax Upper voltage limit
vmin Lower voltage limit
ilim Current limit used in SoP algorithm, either imax or imin
ilim,v Current limit based on voltage
ilim,c Fixed current limit
imax Maximum current
imin Minimum current (i.e. maximum discharge current)

vΔ Voltage margin from v to vlim
I, V Laplace transform of i and v respectively
K Gain of SoP algorithm
G Transfer function representation of equivalent circuit model
F, F0 Transfer functions describing the SoP algorithm
τ Time delay from CAN communication
SoC State of charge
SoP State of power
PHEV Plug-in hybrid electric vehicle
BMS Battery management system
EMS Energy management system
CAN Controller area network
OCV Open circuit voltage

Fig. 2. Equivalent circuit battery model.
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