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a b s t r a c t

In this paper, we investigate both pre- and post-buckling behaviors of multi-walled carbon nanotubes
and multi-walled carbon nanopeapods by incorporating into the applied forces of a prescribed beam
equation both van der Waals interactions between the adjacent walls of the nanotubes and the inter-
actions between the fullerenes and the inner wall of the nanotube. Two beam theories are employed.
First, we utilize Donnell’s equilibrium equation to derive an axial stability condition for the multi-walled
carbon nanotubes and multi-walled carbon nanopeapods. We then determine analytically the critical
forces for single-walled and double-walled nanotubes and nanopeapods. Given the outer nanotube of
a fixed radius, we observe that the critical force and strain derived from the axial buckling stability
criterion decrease as a result of the molecular interactions between the adjacent layers of the nanotubes
and the molecular interactions between the embedded fullerenes and the inner carbon nanotube, which
is in agreement with existing literature. Next, we utilize an EulereBernoulli beam equation incorporating
the curvature effect to obtain the post-buckled axial bending displacement for the multi-walled nano-
tubes and nanopeapods. We find that the interactions between molecules generate an inward force,
which tends to resist any applied forces. While the inward force induced by the fullerenes to the inner
wall of the nanotube vanishes as we increase the applied force, the inward force induced by the layers
increases as the applied force increases. The main contribution of this paper is the incorporation of both
van der Waals interactions and the curvature effect into prescribed beam theories to accurately measure
the critical forces and the buckled displacements of multi-walled nanotubes and nanopeapods subject to
a small external force. Our analysis is relevant to future nano devices, such as biological sensors and
measuring devices for small forces arising from electrical charges or Casimir forces.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The discovery of carbon nanotubes by Iijima (1991) has led to
many experimental, theoretical and computational investigations
on their unique chemical, electrical and mechanical properties.
Owing to the non-polar nature of their molecular bonds, carbon
nanotubes are insoluble and stable in water. However, they can be
covalently functionalized, i.e. they will respond to certain strong
acids and chemical oxidizers. Since they have a large surface to
volume ratio, they can be utilized for gas filtration, sensing and
energy storage. Furthermore, their electrical properties vary
according to their molecular structure. In addition, carbon nano-
tubes have the largest known axial Young’s modulus, which arises
due to the sp2 bond between carbon atoms, resulting in reversible
elastic deformations, such as large twisting, kinking and bending
deformations.

Continuum mechanics has been widely and successfully applied
to the mechanical analysis of carbon nanotubes as an alternative to
molecular dynamics simulations. Recently, Govindjee and Sackman
(1999) adopt a BenoullieEuler beam theory to obtain the Young’s
modulus of multi-walled nanotubes. According to a multiple-elastic
beam model, Yoon et al. (2003) examine resonant frequencies and
obtain vibrational modes of an individual multi-walled carbon
nanotube embedded inside an elastic medium. Li and Chou (2003)
also utilize a space truss model to determine the Young and shear
moduli of a single-walled carbon nanotube. Moreover, Yakobson
et al. (1996) utilize a continuum shell model to predict the buckling
of a single-walled carbon nanotube and their results are compared
with molecular dynamics simulations. A finite element method
(Pantano et al., 2004) andmolecular dynamics simulations (Odegard
et al., 2002; Sohi and Naghdabadi, 2007; Liew et al., 2004; Zhang
et al., 2007) are also utilized to investigate the buckling behavior of
nanotubes. Several experimental works have been performed to
investigate the deformation of single- and multi-walled nanotubes
under high pressure (Thomsen et al., 1999; Elliott et al., 2004).
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In this paper, we investigate the axial buckling of multi-walled
nanotubes and nanopeapods, which have a chain of metal-
lofullerenes or fullerenes inside the carbon nanotube (see Fig. 1).
Nanopeapods have been experimentally observed by Smith et al.
(1998) and Smith and Luzzi (2000) through high-resolution
transmission electron microscopy. It is suggested that the
encapsulation of C60 molecules occurs either through a large
opening on the tube wall (Berber et al., 2002) or through the
open ends of the nanotube (Ulbricht and Hertel, 2003; Ulbricht
et al., 2003). For different possible equilibrium configurations of
fullerenes inside a nanotube (e.g. linear, zigzag and spiral
patterns), we refer the reader to Baowan et al. (2007) and refer-
ences therein. Axial buckling may be experimentally demon-
strated as a nanoelectromechanical effect on a doubly clamped
suspended nanotube or nanopeapod. We assume that a nanotube
or a nanopeapod is attached by two electrodes through tunneling
contacts, in which Coulomb-blockade effects dominate the
transport. The applied gate voltage bends the nanopeapod by an
applied external electrical field E0, which affects both electrical
and mechanical properties of the nanostructure, and is generally
referred to as a nanoelectromechanical system (Ke et al., 2005a,b;
Pugno, 2005; Pugno et al., 2005). Similar to the case of doubly
clamped single-walled carbon nanotubes, such hybrid molecular
structures as single-walled and double-walled nanopeapods can
be utilized as nanotweezers (Kim and Lieber, 1999; Akita et al.,
2001), switches in a random access memory device (Rueckes
et al., 2000), actuators (Baughman et al., 1999) and nano-
electromechanical switches (Dequesnes et al., 2002; Kinaret et al.,
2003). In addition, with natural electronic properties, nano-
peapods with embedded metallofullerenes can be utilized as
ultra efficient on-and-off gigahertz oscillators (Zheng and Jiang,
2002; Legoas et al., 2003; Cox et al., 2007a,b) using an applied
external electric field.

This paper is structured as follows. In Section 2, we derive the
linear constants for different layers of the nanotubes (a detailed
derivation is given in Appendix A). In addition, the force arising
from the LennardeJones potential, which comprises both an
attractive part (van der Waals) and a repulsive part (Pauli exclusion
principle), we simply refer to such force as the van der Waals force
for the fullerenesenanotube interactions and it is derived utilizing
a continuous approximation developed by Cox et al. (2007a,b). In
Section 3, we introduce Donnell’s equation and we determine the
critical forces for the single- and double-walled carbon nanotubes
and nanopeapods. In Section 4, on assuming a multi-walled carbon
nanotube and nanopeapod as a one-dimensional structure, we
adopt an EulereBernoulli beam theory, derived from a variational
principle, to study the doubly clamped suspended single-walled
and double-walled nanotubes and nanopeapods under bending.
Some conclusions are given in the final section and certain detailed
mathematical derivations are presented in the appendices of the
paper.

2. Intermolecular forces

In this section, we derive the linear response constants for the
layers of the nanotubes and determine the van der Waals force
between fullerenes and the inner wall of a nanotube by utilizing
a continuous approximation for which we assume that the carbon
atoms are smeared over the surfaces of the fullerenes and the
nanotubes. We comment that the results obtained in this section
are utilized to correct the critical forces and the post-buckled
bending displacements of multi-walled nanotubes and nano-
peapods presented in Sections 3 and 4, respectively.

2.1. Intermolecular force between layers

Forces between the layers of carbon nanotubes with different
radii (see Fig. 2) must satisfy Newton’s third law, i.e. pi;jRi ¼ �pj;iRj,
where pi;j denotes the pressure exerted from the jth layer to the ith
layer, Ri denotes the tube radius for the ith layer and where
subscripts i ¼ 1.N denotes the ith layer of the carbon nanotube.
We assume that the incremental pressureDpi of the ith layer arising
froman adjacent jth layer to be linear in the displacement difference
between the two layers, i.e. uj � ui, where ui denotes the displace-
ment of the ith layer. From these assumptions we may deduce

Dp1 ¼ p1;2 ¼ c1ðu2 � u1Þ;
Dp2 ¼ p2;3 þ p2;1 ¼ c2

�
ðu3 � u2Þ �

R1
R2

ðu2 � u1Þ
�
;

« «
DpN ¼ pN;N�1;

(1)

where ci denotes the linearity constant for ith layer, which can be
found by matching the van der Waals interactions between the
nanotube layers and Taylor’s expansion around an equilibrium
configuration, and which is derived in Appendix A. Assuming that
the molecules are at equilibrium, the force per unit length acting on
different layers must be equal, which can be written as

N1z ¼ R1p1 ¼ N2z ¼ R2p2 ¼ . ¼ NNz ¼ RNpN : (2)

Thus, for the total applied force per unit length T, we have

T ¼ R1p1 þ R2p2 þ.þ RNpN;

¼ R1p1 þ R2

�
R1
R2

p1

�
þ.þ RN

�
R1
RN

pN

�
¼ NR1p1;

from which we obtain

p1 ¼ T
NR1

; N1z ¼ R1

�
T

NR1

�
¼ T

N
; (3)

where Eq. (2) is utilized to obtain Eq. (3). Following the same
argument as that stated above, we may deduce

pi ¼
T
NRi

; N1z ¼ N2z ¼ . ¼ T
N
: (4)

Fig. 1. Nanopeapods. Fig. 2. Schematic of multi-walled nanopeapod.
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