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a b s t r a c t

Following a previous paper by the author [Strain gradient plasticity, strengthening effects and plastic
limit analysis, Int. J. Solids Struct. 47 (2010) 100e112], a nonconventional plastic limit analysis for
a particular class of micron scale structures as, typically, thin foils in bending and thin wires in torsion, is
here addressed. An idealized rigid-perfectly plastic material is considered, which is featured by
a strengthening potential degree-one homogeneous function of the effective plastic strain and its spatial
gradient. The nonlocal (gradient) nature of the material resides in the inherent strengthening law,
whereby the yield strength is related to the effective plastic strain through a second order PDE with
associated higher order boundary conditions. The peculiarity of the considered structures stems from
their geometry and loading conditions, which dictate the shape of the collapse mechanism and make the
higher order boundary conditions on the (microscopically) free boundary be accommodated by means of
a boundary singularity mechanism. This consists in the formation of thin boundary layers with
unbounded stresses, but bounded stress resultants which dtogether with the regular bulk stressesd
contribute to the value of the collapse load. Closed-form solutions are provided for thin foils in pure
bending and thin wires in pure torsion, and in particular the limit bending and torque moments are given
as functions of an adimensionalized internal length parameter.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Materials in the form ofmicron scale specimen, or under a highly
localized strain field, are known to exhibit notable size effects, in the
sense that “smaller is stronger”.Widely recognizedexamplesof such
effects are: the increase of the indentation hardness with the
decreasing of the indentation depth; the increase of the hardening
rate with the decreasing of the specimen size; the so-called
“strengthening effects”, that is, the increase of the yield strength
with the decreasing of the crystal grain size (HallePetch effects), or
even of the specimen size. See Fleck and Hutchinson (1997),
Hutchinson (2000), Aifantis (2003), Gudmundson (2004), Hansen
(2004) and Gurtin and Anand (2005) for an overview on these
phenomena and the related literature.

Another kind of strengthening effects, recently pointed out by
the author (Polizzotto, 2010a) on theoretical bases, is the increase
of the plastic collapse limit load of structures with the decreasing of
the specimen size. In the latter quoted paper, plastic limit analysis
for micron scale structures was addressed. It was shown that the

basic concepts of the classical plastic limit analysis, including the
concept of rigid-plastic behavior, can be extended to thementioned
structures in away suitable to capture size effects (or strengthening
effects). Like in classical limit analysis, for every loaded body,
a plastic limit state exists, in which the body deforms plastically
under constant load, the value of which depends on the actual yield
strength (sy), the latter being determined through a strengthening
law in terms of the effective plastic strain field. Since the
strengthening effects, being strictly related to the shape of the
collapse mechanism, are not known in advance, their evaluation
needs to solve a nonconventional plastic limit analysis problem, in
which the actual yield strength constitutes an additional unknown
field carrying in the nonlocality features of the problem.

In the latter theory, the strengthening effects are simulated by
means of a fictitious isotropic hardening featured by a strengthening
potential, say jst ¼ jstðk;VkÞ, which is a positively degree-one
homogeneous function of the effective plastic strain, k, and its
spatial gradient, Vk. Consistent with nonlocal continuum thermo-
dynamics, the above potential leads to thementioned strengthening
law, whereby a strengthening stress, say Y, expressing the increase of
the initial yield strength at the generic point of the body is related
to k through a second order PDE (partial differential equation)
with suitable higher order boundary conditions. The equation set
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governing the plastic limit analysis problem includes the above PDE
and boundary conditions, beside all the equations pertaining to the
classical counterpart problem (i.e. equilibrium and compatibility
equations, yield conditions, normalization condition), but with the
known initial yield strength, sy0, replaced by sy ¼ Y þ sy0.

The resulting nonclassical plastic limit analysis problem proves to
be mathematically more complex than the classical one due to
a coupling between the variables of static-type (load multiplier,
stresses, strengthening stress) and those of kinematic-type (plastic
strains, displacements) inducedby the strengthening law,notpresent
in the classical counterpart problem. Nevertheless, the fundamental
theoremsof classical plastic limit analysis, i.e. the solutionuniqueness
and the lower and upper bound theorems, were shown to hold in the
presence of strengthening effects, such that the collapse load multi-
plier can still be obtained either as the maximum statically and
plastically admissible load multiplier, or as the minimum kinemati-
cally admissible load multiplier (Polizzotto, 2010a).

Limit analysis problems like the one described above were
addressed by Anand et al. (2005) for a one-dimensional shear
model by means of a FEM (finite element method) procedure. The
same shear model was addressed by Polizzotto (2010a) bymeans of
an iterative numerical procedure with results quite similar to those
by Anand et al. (2005).

A problematic aspect of the nonclassical plastic limit analysis
previously described, so far not explicitly noticed, arises for certain
structure geometries and loading conditions, as, typically, thin
beams, or foils, in bending and thin wires in torsion. For such
structures, the shape of the collapse mechanism proves to be fixed,
such that the higher order boundary conditions on the (micro-
scopically) free boundary can be enforced only by means of some
sort of singularities arising in the vicinity of the boundary surface.

For example, for a thin beam in pure bending being in the plastic
limit state, the plastic strain has to be linearly distributed in the
(rectangular) cross section height, whereas the relevant higher order
boundary conditions at the top and bottom “free” sides of the cross
section demand that the slope of the plastic strain profile be there
vanishing. This means that the plastic strain profile has to exhibit
slope jumps at points just close to the extremes of the cross section
height, where thus the curvature of the strain profile is unbounded,
and this in turn e through the strengthening law e implies that the
yield strength is also unbounded together with the stress. These
singularities substantiate in the formation of top and bottom
extremely thin rigid-plastic boundary layers sustaining infinite
stresses, but finite stress resultants, which do contribute to the limit
bendingmoment value. Similar considerations hold for a thinwire in
torsion, forwhich the singularityconsists ina slope jumpof theplastic
shear strain radial profile at points close to the boundary surface and
thus the latter surface plays the role of thin boundary layer.

The above singularity mechanism is peculiar of rigid-plastic
materials of gradient type, it thus manifests itself not only when
such a material is in a state of plastic collapse, but also whenever it
deforms under increasing load. Engelen et al. (2006) and Idiart et al.
(2009) addressed thin foils in bending in the hypothesis of elas-
ticeplastic hardening behavior. In analogy to the experimental
study by Stölken and Evans (1998), they built a closed-form solu-
tion from where they derived the analogous solution for the limit
case of rigid-plastic hardening behavior. They found that, in the
latter limit case, the bending moment is formed up by, beside the
standard contribution from the bulk stress, a nonstandard contri-
bution from some top and bottom layers in the foil thickness, where
the stresses are infinite, but the stress resultants are finite.

The purpose of the present paper is to address the (noncon-
ventional) plastic limit analysis of thin foils in pure bending and of
thin wires in pure torsion, and in particular to show how the limit
bending and torque moments vary with the internal length scale

parameter. It is found that, whereas the global strength of the
specimens increases with the decreasing size, the local strength
may decrease correspondingly, as it actually occurs in the central
regions of the cross sections. This is in accord with the predictions
of the gradient plasticity theory by Gurtin and Anand (2005) about
strengthening and weakening within plastically deformed micron
scale structures. It is also found that the dissipation power (power
wasted as heat per unit volume) is size-independent, it thus coin-
cides with its classical counterpart, whereas the stress power
(plastic work rate done by the Cauchy stresses) is instead size-
dependent.

It would be desirable to compare the obtained results with
analogous experimental results, but these latter seem to be lacking,
to the author’s knowledge. The experiments conducted by Stölken
and Evans (1998) and Moreau et al. (2005) for thin foils in bending
and by Fleck et al. (1994) for thin wires in torsion were not so
extensive to include the specimen’s plastic collapse. Nevertheless,
the results provided with the present study may constitute useful
predictions for safety judgments within the domain of micron scale
structures.

The essentials of the above nonclassical limit analysis theory
referred to in the present study (Polizzotto, 2010a) are illustrated in
Section 2 together with some additions necessary to set up a basis
for the applications to thin foils in bending (Section 3) and thin
wires in torsion (Section 4). For the theoretical bases of this theory,
readers are requested to consult the latter quoted paper.

Notation. A compact notation is used, with boldface letters
denoting vectors or tensors of any order. The scalar product
between vectors or tensors is denoted with as many dots as the
number of contracted index pairs. For instance, denoting by
u ¼ {ui}, v ¼ {vi}, 3 ¼ {3ij}, s ¼ {sij} and A ¼ {Aijkh} some vectors and
tensors, one can write: u$v ¼ uivi, s : 3 ¼ sijeji, A : 3 ¼ fAijkh3hkg.
The summation rule for repeated indices holds and the subscripts
denote components with respect to an orthogonal Cartesian co-
ordinate system, say x ¼ ðx1; x2; x3Þ. An upper dot over a symbol
denotes its time derivative, _u ¼ vu=vt. The symbol V denotes the
spatial gradient operator, i.e. Vu ¼ fviujg, Vsym is the symmetric

part of V; D
ðnÞ

:¼ V� nvn denotes the tangential gradient on
a surface element with unit normal n. The symbol :¼ means
equality by definition. Other symbols will be defined in the text at
their first appearance.

2. The plastic collapse load problem

Let us consider a solid body occupying the (open) domain V of
boundary surface S ¼ vV , which undergoes conventional small
deformations under external loading actions and, in its initial
undeformed state, is referred to Cartesian orthogonal co-ordinates,
say x ¼ ðx1; x2; x3Þ. An idealized rigid-perfectly plastic material is
considered, with the yield strength exhibiting size effects.

2.1. Strengthening potential and strengthening surface

Following Polizzotto (2010a), the latter size effects (referred to
as “strengthening effects” in the sequel) are simulated by means of
a fictitious isotropic hardening featured by a suitable hardening
potential, say jstðk;VkÞ, where k denotes the effective plastic strain,
assumed to be C1-continuous in V. jst, called strengthening poten-
tial, has to possess the following requisites:

� jstðk;VkÞ is a positively degree-one homogeneous function of
its arguments, i.e. jstðak;aVkÞ ¼ ajstðk;VkÞ; ca > 0.

� jstðk;VkÞ ¼ 0 whenever Vk ¼ 0.
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