Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/03787753)

journal homepage: www.elsevier.com/locate/jpowsour

Preventing structural degradation from $Na_3V_2(PO_4)_3$ to $V_2(PO_4)_3$: F-doped $Na₃V₂(PO₄)₃/C$ cathode composite with stable lifetime for sodium ion batteries

Y[a](#page-0-0)njun Chen^{a[,b](#page-0-1)}, Youlong Xu^{[a,](#page-0-0)[b](#page-0-1),}*, X[ia](#page-0-0)ofei Sun^{a,b,}**, Baofeng Zhang^{a,b}, Shengnan He^{a,b}, Long Li^{a,b}, Chao Wang[a,](#page-0-0)[b](#page-0-1)

a Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China

^b Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an, China

HIGHLIGHTS

- F-doped $\text{Na}_3\text{V}_2(\text{PO}_4)_{3-x}\text{F}_x/\text{C}$ samples are synthesized by solid-state reaction method.
- F-doping can restrain the structural degradation from $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ to $\text{V}_2(\text{PO}_4)_3$.
- F-doping can decrease the particle size efficiently.
- Retention of F-0.07-NVP/C is 86% (97.8 mAh g^{-1}) after 1000 cycles at 200 mA g^{-1} .
- D_{Na} ⁺ of F-0.07-NVP/C is two orders of magnitude higher than NVP/C.

ARTICLE INFO

Keywords: Sodium vanadium phosphate Fluorine-doping Stable lifetime Structural degradation Sodium ion battery

ABSTRACT

A prospective NASICON-type F-doped Na3V2(PO4)2.93F0.07/C (F-0.07-NVP/C) composite is synthesized by a solid-state reaction method. F-doping can restrain the structural degradation from $Na_3V_2(PO_4)_3$ to $V_2(PO_4)_3$ and enhance the structural stability. Meanwhile, it can decrease the particle size to diminish the pathway of Na⁺ diffusion, which can increase ionic conductivity efficiently. The kinetic behavior is significantly improved and it is beneficial to reinforcing the electrochemical performance of F-doping composites. Compared with Undoped-NVP/C sample, F-0.07-NVP/C composite delivers a 113 mAh g $^{-1}$ discharge capacity at 10 mA g $^{-1}$, which is very close to the theoretical capacity (117 mAh g⁻¹). As for cycle performance, a reversible capacity of 97.8 mAh g⁻¹ can be obtained and it retains 86% capacity after 1000 cycles at 200 mA g⁻¹. F-0.07-NVP/C composite presents the highest D_{Na} ⁺ (2.62 × 10⁻¹⁵ cm²s⁻¹), two orders of magnitude higher than the undoped sample $(4.8 \times 10^{-17} \text{ cm}^2 \text{s}^{-1})$. This outstanding electrochemical performance is ascribed to the synergetic effect from improved kinetic behavior and enhanced structural stability due to F-doping. Hence, the F-doped composite would be a promising cathode material in SIB for energy storage and conversion.

1. Introduction

Over the past few decades, there has been increased attention to the renewable energy devices based on electrochemical energy storage (EES) technology due to their high round-trip efficiency, and outstanding energy characteristics to meet the energy shortage challenge [[1](#page--1-0)]. With the significant development of lithium-ion battery (LIB) technologies, they have been playing important roles in various fields such as electric vehicles, portable computers and so on all over the world [\[2\]](#page--1-1). However, the inhomogeneous geographical distribution, extraordinarily limited storage content and rough recycling of lithium resources are obstacles for further large-scale production of LIB [[3](#page--1-2),[4](#page--1-3)]. Therefore, it is of great significance to employ other energy storage systems as alternatives to LIB [\[5](#page--1-4)–7]. Recently, sodium ion batteries

<https://doi.org/10.1016/j.jpowsour.2017.12.073>

[∗] Corresponding author. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong

Corresponding author. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China.

E-mail addresses: ylxu@mail.xjtu.edu.cn (Y. Xu), xfsunxjtu@mail.xjtu.edu.cn (X. Sun).

Received 31 October 2017; Received in revised form 13 December 2017; Accepted 25 December 2017 0378-7753/ © 2017 Elsevier B.V. All rights reserved.

(SIBs) have become research hotspots as promoting energy systems to replace LIBs due to their abundant reserves and low cost [8–[10](#page--1-5)]. However, there are still many challenges for the development of SIB because of the fundamental differences between sodium and lithium. The larger ionic radius of Na⁺ (0.98 Å vs. Li⁺ 0.69 Å) will lead to slower ion diffusion and larger unit cell volume change upon $Na⁺$ deintercalation, which usually generates poor kinetic properties [\[11](#page--1-6)]. Accordingly, electrode materials with enough interstitial space for Na⁺ transportation are highly recommended [\[12](#page--1-7)].

Recently, sodium super ionic conductors (NASICON) cathode materials have been investigated for SIB due to their unique crystal structure [\[13](#page--1-8)–15]. NASICON-type sodium vanadium phosphate $(Na_3V_2(PO_4)_3)$ is one of the most prospective cathode materials for SIB. It has been proved that $Na₃V₂(PO₄)₃$ can exhibit two voltage platforms at 1.6 V and 3.4 V vs. Na⁺/Na, related to V^{3+}/V^{2+} and V^{4+}/V^{3+} redox couples with theoretical specific capacities of 58.8 and 117.6 mAh g^{-1} [16–[18\]](#page--1-9). The framework composed of corner-sharing octahedral VO_6 and tetrahedral PO₄ generates excellent structure and thermal stability [19–[21\]](#page--1-10). However, poor electrical conductivity and Na-ion diffusion mobility impede the improvement of electrochemical performance. Moreover, the moving disadvantage of large-size $Na⁺$ cannot be neglected when the intercalation/deintercalation of Na^+ proceeds through the structure. Many studies have found that the significant volume change because of the accommodation of $Na⁺$ usually leads to structural degradation of $Na_3V_2(PO_4)_3$ and subsequent capacity loss, resulting in poor rate and cyclic performance [\[14,22](#page--1-11)–24]. To cover the shortages, nano-crystallization [25–[29\]](#page--1-12), conductive layers-coating [30–[34\]](#page--1-13) and dopants introduction [\[35](#page--1-14)–40] can promote the kinetic performance in both LIB and SIB tremendously. Anion-doping is a feasible method to enhance the kinetics and cyclic stability, which is widely used in LIB [41–[43\]](#page--1-15). However, the effects of anion substituting on the structure stability and electrochemical performance of $Na₃V₂(PO₄)₃$ composite have been rarely explored.

Fluorine doping is a significant approach to improve the electrochemical performance in various cathode materials in LIB field. In this work, we demonstrate that F-doped $\text{Na}_3\text{V}_2(\text{PO}_4)_{3-x}\text{F}_x/\text{C}$ composites can be promising cathode materials due to the advantages of favourable effects on electrochemical properties related to LIB. Compared to undoped $\text{Na}_3\text{V}_2(\text{PO}_4)_3/\text{C}$ sample, the F-doped $\text{Na}_3\text{V}_2(\text{PO}_4)_{3-x}\text{F}_x/\text{C}$ composites show outstanding rate and cyclic performance, which results from superior structure stability and enhanced electrochemical properties. Moreover, the discovery of structural variation during intercalation/ deintercalation for $Na_3V_2(PO_4)_3$ cathode material has been thoroughly investigated for the first time.

2. Experimental

2.1. Material preparation

We adopted a convenient carbon-thermal reduction method to synthesize the Na₃V₂(PO₄) _{3-x}F_x/C samples, where x = 0,0.01,0.04 and 0.07. Analytical purity Na_2CO_3 , $NH_4H_2PO_4$, V_2O_5 , NaF and $C_6H_{12}O_6$ · H₂O were used as starting materials. 5 wt% excess $C_6H_{12}O_6 \cdot H_2O$ was added to ensure that the reducer was enough for the V^{3+}/V^{5+} reaction in order to keep the stoichiometric ratio. These materials were mixed together and ball-milled in pure ethanol in stoichiometric proportion for 12 h. Then the mixed slurry were dried off at 80°Cfor 12 h, followed by preheated treatment at 450°C for 4h in an argon furnace. Subsequently, the mixture was heated at 700 °C for 6 h in argon atmosphere. The prepared pristine and doped samples containing 1%, 4%, and 7% fluorine are abbreviated as Undoped-NVP/C, F-0.01- NVP/ C, F-0.04- NVP/C and F-0.07- NVP/C.

2.2. Characterization

were employed to examine the crystal structure of samples. The particle morphology was observed by a Scanning Electron Microscopy (SEM, FEI Quanta FEG 250) and a Transmission Electron Microscopy (TEM, JEM 2100). Fourier transform infrared (FT-IR) absorption spectra were analyzed by an FTIR-spectrometer (Nicolet iS10, Thermo Scientific) at room temperature. The particle sizes were measured by a zeta size analyzer (Nano-ZS90, Malvern). Thermogravimetric Analysis (TGA, Mettler-Toledo) were employed to analyze the weight percentages of carbon in every sample, respectively.

2.3. Cell fabrication and electrochemical measurements

Electrochemical measurements of the prepared composites were conducted in 2016-type coin half-cells. The working electrodes including 70 wt% active material, 20 wt% acetylene black and 10 wt% binder (PVDF) were dissolved in N-Methyl-2-Pyrrolidone (NMP) solvent and then mixed uniformly in a ball mill. A clean aluminum foil was acted as a substrate and the final electrodes were vacuum dried at 120°Cfor 12 h. Sodium metal was used as the anode and the separator was Celgard 2400 membrane. 1 M NaClO₄ in propylene carbonate (PC) with 2 vol% fluoroethylene carbonate (FEC) was applied as electrolyte. The loading mass of active species during the electrochemical evaluation is typically about 1.5–2.0 mg cm⁻², and the electrode footprint area is 2.01 cm⁻¹. The electrochemical performance of cells were tested on a LAND CT2001A battery test system (Wuhan, China)in the voltage ranges of $2.3-4.2$ V vs. Na/Na⁺ at room temperature. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted by using a Versatile Multichannel Galvanostat 2/Z (VMP2, Princeton Applied Research). The amplitude is 5 mV and the frequency ranges between 10^{-2} and 10^{5} Hz for the EIS. The scan rate was 0.1 mV s^{-1} and the voltage ranged between 2.3 V and 4.2 V for the CV. The electronic conductivity measurements were performed on a RTS-9 linear four-point probe system.

3. Results and discussion

In order to investigate the influence of F-doping on the crystal structure, XRD measurements were employed and the results are dis-played in [Fig. 2a](#page--1-16). All the XRD patterns of $\text{Na}_3\text{V}_2(\text{PO}_4)_{3-x}\text{F}_x/\text{C}$ (x = 0, 0.01, 0.04 and 0.07) samples can be indexed to R-3c space group and are in good agreement with the framework of a rhombohedral NA-SICON structure. The sharp peaks correspond to the high crystallinity for all samples. It is noteworthy that NaVP_2O_7 is detected as impurity phase in all samples but $NaVO₂$ is existed only in F-doping samples. The result of NaVP_2O_7 is consistent with the research by Si et al. [\[33](#page--1-17)]. Moreover, the existence of $NaVO₂$ in the F-doping samples is facilitated to the intercalation/deintercalation of $Na⁺$ because it has the layer structure for rapid migration of Na⁺ [[44](#page--1-18)[,45](#page--1-19)]. Our work indicates that the lattice parameters of samples decrease gradually with the content of F-doping, consistent with Zhong et al. [[43\]](#page--1-20). The enlarged part indicates that the position of peak (024) shifts slightly to the larger angle gradually with the increase of F-doping content, which suggests that the Fdoping samples have less lattice parameter and interplanar spacing. [Table 1](#page-1-0) shows the unit cell parameters calculated from the indexed patterns. With the increasing content of F-doping, the volume of $Na_3V_2(PO_4)_{3-x}F_x$ samples declines slightly, which indicates that F-

Download English Version:

<https://daneshyari.com/en/article/7725869>

Download Persian Version:

<https://daneshyari.com/article/7725869>

[Daneshyari.com](https://daneshyari.com)