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H I G H L I G H T S

• Optimal control techniques for long
term optimisation of the single par-
ticle model.

• Assessment of the accuracy of three
approaches to battery degradation
modelling.

• Economic optimisation for electricity
trading with three different battery
models.

• Increased profit by 175% through 13%
higher revenue and 73% lower de-
gradation.
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A B S T R A C T

The increased deployment of intermittent renewable energy generators opens up opportunities for grid-con-
nected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery
lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not
account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including
realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of
increasing realism are formulated, and the predicted degradation of each is compared with a large-scale ex-
perimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from
11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control
algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be
increased substantially while degradation can be reduced by using more realistic models. The estimated best case
profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates
that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might sub-
stantially underestimate the business case and lead to erroneous conclusions.

1. Introduction

Challenges for the electricity system arise due to increasing de-
ployment of intermittent renewable energy sources [1]. For example,

balancing production and demand becomes more difficult, grid inertia
decreases, and distribution grids become more congested. As part of a
broad portfolio of possible solutions, battery energy storage provides a
flexible option to address many of these problems. However, the
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lifetime of a battery in terms of capacity and power capability strongly
impacts the profitability of battery storage [2]. The lifetime of a li-
thium-ion (li-ion) battery depends on how it is used because there are
multiple degradation mechanisms, each influenced by different usage
patterns [3].

Many previous economic assessments of storage have included a
battery degradation model, usually an empirical correlation based on
fitting of measured degradation tests e.g. Refs. [2,4–6]. Although em-
pirical models can provide valuable insight, they should be used with
caution [7,8]. They are based on a limited number of test conditions
and do not necessarily apply to other load profiles, risking extrapolation
without theoretical basis. Furthermore, battery characteristics change
as batteries age, which is often not taken into account. Finally, em-
pirical models only apply to the exact type of cell for which they have
been developed.

A few researchers have used electrochemical models to address
these issues, and initial results are promising: a more intelligent battery
utilisation informed by a physical model could decrease battery de-
gradation. Lawder et al. [10] compared battery models for a simple
micro-grid application (ignoring degradation) and noted how accu-
mulated errors in equivalent circuit battery models led to substantial
discrepancies between the simulated and real state of charge (SoC).
Multiple researchers, e.g. Refs. [11,12], used electrochemical battery
models to optimise charging profiles, increasing battery life. Others
have used electrochemical battery degradation models without opti-
misation to analyse specific case studies [9,13,14].

These cases studies showed the potential for using electrochemical
battery models to improve the lifetime and therefore the economic
impact of grid-connected batteries. However, to our best knowledge,
due to the complexity of these nonlinear battery models, they have not
been used for optimisation over a long time horizon (e.g. a year), yet
this is required to truly quantify their performance. Therefore, this
paper aims to identify the economic performance gains achievable by
using a nonlinear, electrochemical battery model, including realistic
dynamics and degradation, in an economic optimisation for a realistic
grid application over a full year of data.

2. Nomenclature

α Degradation parameter in equivalent circuit
model

β Degradation parameter in equivalent circuit
model

λ t( ) Wholesale electricity price at time t −€ (Wh) 1

λdegr,Wh Cost of battery energy degradation −€ (Wh) 1

λdegr,Ah Cost of battery charge degradation −€ (Ah) 1

λdegr,LLI Cost of lost cyclable lithium −€ (Ah) 1

C Battery degradation cost €
Cp Parallel capacitor in equivalent circuit model F
c r t( , )i Lithium concentration in electrode i at radius r

and time t in single particle model
−mol m 3

ci
max Maximum lithium concentration in electrode i −mol m 3

EWh Battery energy capacity Wh
EAh Battery charge capacity Ah
Elost,Wh Lost battery energy capacity Wh
Elost,Wh Lost battery charge capacity Ah
f Battery state space model
g Constraint function
I t( ) Battery current at time t A
I t( )r Current through the parallel resistor in the

equivalent circuit model at time t
A

L T( )end Lost cyclable lithium at the end of the simulation
time

Ah

N Number of cells in the battery −

OCV Open circuit voltage in the equivalent circuit
model

V

P t( ) Power to/from the battery at time t W
R Revenue per unit of time −€ h 1

Rp Parallel resistor in the equivalent circuit model Ω
Rs Series resistor in the equivalent circuit model Ω
Tend Total simulation time h
u t( ) Control variables at time t
u t( )n Control variables in optimisation n at time t
U t( )opt Optimal control variables at time t

U t( )n
opt Optimal control variables in optimisation n at

time t
V t( ) Battery voltage at time t V
Vmean Mean battery voltage V
x t( ) State variables at time t
x t( )n State variables at time t in optimisation n
z t( ) State of charge at time t −

3. Methods

3.1. Problem setup

In this simulation study, a lithium-ion battery was used for price
arbitrage. In other words, revenue was made by buying energy on the
wholesale market when prices were low, charging the battery, and then
selling energy on the market at higher prices at a later point, dischar-
ging the battery. However, usage of the battery also resulted in capacity
fade. The task of a battery operator who wishes to exploit this market is
to identify a load profile which maximises revenue and minimises lost
capacity. For price data we used the wholesale price of the Belgian day-
ahead electricity market in 2014, shown in Fig. 1, where the colour
indicates the price at each hour (y-axis) of each day (x-axis). The price
was assumed to be known perfectly, leading to a deterministic opti-
misation problem, described below.

A generic optimal control formulation was used to describe this
problem mathematically (1–3). The revenue per unit of time R and the
degradation cost C are both a function of the control variable u(t) and
the state variable x(t). A state-space model f for the battery relates the
state variables to the control variables and initial states. Depending on
the battery state space model, a different physical meaning is given to
the control and state variables. Other constraints such as the voltage
limits of the battery, were incorporated into the constraint function g.
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Fig. 1. Wholesale price on the day-ahead market in Belgium in 2014 [15].
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