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The buckling problem of an infinite thin plate resting on a tensionless Winkler foundation and subjected
to shearing loads is investigated. The infinite plate is simplified to a one-dimensional mechanical model
by assuming a lateral buckling mode function and a borderline function between contact and non-
contact regions. After the governing differential equations for the plate sections in the contact and
non-contact regions have been solved, the problem reduces to two nonlinear algebraic equations.
Buckling coefficients for plates with simply supported edges and clamped edges are determined for
a range of relative foundation stiffness factors. Comparison of the results with existing theory and finite
element analyses shows good agreement.
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1. Introduction

Laminated composite members which consist of an external
steel sheet containing a light-weight filler are widely used in the
civil engineering industry. Under compressive or shear stress
conditions, the external steel skin is likely to exhibit a type of
unilateral contact buckling in which sections of the skin become
separated (delaminated) from the filler material and buckle away
from it, while other sections maintain contact with the filler
material. This type of buckling problem may be modelled as a thin
plate (steel skin) supported by a tensionless elastic foundation
(filler material), leading to a problem which is difficult to analyse
due to the nonlinearities resulting from the unilateral constraint
and the complexity of contact effects. One challenge during the
solution procedure is the determination of unknown boundary
conditions (contact zones and non-contact zones).

Existing literature relevant to the topic has focused mainly on
the analysis of buckling under direct compressive loading. Seide
(1958) studied a simply supported infinite plate resting on rigid
foundations. Shahwan and Waas (1994) and Smith et al. (1999a)
studied unilaterally constrained finite plates with different
boundary conditions. Wright (1995), Uy and Bradford (1996), Smith
etal. (1999b, 1999¢) and Ma et al. (2008a) studied the local buckling
problems in composite steel-concrete members. To consider the
deformation of an elastic foundation, Chai et al. (1981) studied
a one-dimensional delamination buckling problem through
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a beam-column model. Shahwan and Waas (1998) presented an
infinite plate model for plates resting on tensionless Winkler
foundations. Ma et al. (2007) numerically simulated the buckling
responses of two plates in unilateral contact. Taking clamped plates
for example, the relationship between elastic foundation model,
rigid foundation model, infinite plate model and finite plate model
was clarified by Ma et al. (2008b). Studies of post-buckling
behaviour of plates supported by tensionless rigid/elastic founda-
tions were conducted by Chai (2001), Holanda and Goncalves
(2003) and Shen and Li (2004). Regarding the buckling behaviour
of plates in pure shear, Smith et al. (1999d) studied finite-length
plates with combinations of clamped, simply supported and free
edges. Buckling responses of plates with aspect ratios varying
between 1 and 4 were given. In general, a significant computational
and modelling effort is required in order to achieve an accurate and
stable buckling coefficient for plates with large aspect ratios. For
the case of a long plate, a simplified infinite plate model is more
suitable for bilateral buckling analysis (Timoshenko, 1936) and
unilateral contact buckling analysi (Ma et al., 2008a, b). However,
the shear buckling solution (Ma et al., 2008a) was focused on the
rigid foundation case. As a further study, this paper addresses the
problem of infinite plates resting on tensionless elastic foundations
and endeavours to discover the relationship between shear contact
buckling coefficients and the foundation stiffness.

2. Buckling analysis of infinite plate in pure shear

Ignoring end effects, a relatively long strip resting on
a tensionless Winkler foundation and loaded by in-plane shearing
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stresses reduces to an infinite thin plate model with periodically
repeating buckles as shown in Fig. 1.

Considering a single wave length plate section, the governing
equation for an isolated thin plate may be expressed as
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where D = Et3/12(1 —#?); K = b%tt/n2D; k; = 0:non—
contact area/k : contact area; g; is half-wave-length of the ith plate
section; b and t are plate width and thickness; D, E, v are flexural
rigidity, elastic modulus and Poisson’s ratio of the plate;z is shear
stress; w; is vertical displacement in the ith plate section;x; is local
longitudinal coordinate in the ith plate section; y is transverse
coordinate; k is stiffness factor of the Winkler foundation; the
subscript, x;(y) indicates partial differentiation 9/9x;(d/9y), etc, the
subscript ; indicates that the parameter relates to plate section i
(i = 1 for non-contact plate section, i = 2 for contact plate section).

For buckling analysis of an infinite strip, an approximate
deflection surface function expressed through the combination of
the lateral mode, longitudinal mode and the zero deflection nodal
line may be assumed as

wi(x;,y) = fi(X)g(y) (2)
where f;(X;),g(y) are longitudinal and lateral buckling mode func-
tions respectively; X; = x; —s(y); s(y) is the borderline function
defining the border between contact and non-contact regions. For
non-dimensional analysis, Eq. (2) may be rewritten as

wi(x,y) = wi&,m) = fiG)gm) (3)

where buckling mode functions f;(§;) = fi(X;),g(n) = g(y), non-
dimensional parameters &; = X;/a; = [x; —s(n)]/a;, n = y/b. The
lateral buckling mode function g(n) may be assumed as (Ma et al,,
2008a)

g(n) = cos ®mn for a simply supported plate (4a)

and
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gmn) = [1/4 - 172] for a clamped plate. (4b)

The borderline function may be assumed as

s) = sm) = blerm+ e + csn® + -+ "] (4c)

, 32/2 a2/2|

=

Fig. 1. Buckling mode of an infinite plate in pure shear.

where N is order of the highest order y term in borderline poly-
nomial. For simply supported plates, the boundary conditions may
be expressed as

wiG.n) = fig =0 n=x1/2 (5a)
Wi Eim) =fis2g—fis's~2fis'g +fig' =0 m==+b/2  (5b)
For clamped plates, the boundary conditions are

wiG.n) = fig =0 n=+1/2 (5¢)
WiyEim) = —fisg+fig =0 m =172 (5d)

where primes denote differentiation with respect to &; or 7.

For clamped plates, the assumed buckling mode based on (4b)
exactly satisfies the boundary conditions (5c) and (5d). However,
for simply supported plates, the assumed buckling mode (4a) does
not automatically satisfy the boundary condition of (5b). Thus we
require an additional equation for simply supported plates

s'(n = +£1/2) =c;1 +3c3(1/2)%+5¢5(1/2)*+--- + Ney(1/2)N1
=0 N>3 (6)

Substituting Eq. (3) into Eq. (1) and integrating (1) after multi-
plying both sides by function g(n), we have
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where
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The symmetric solution of (7) may be written as

fiG) = Arifii + Agifyi (8)
where the functions f;; and f,; depend on the value of the
parameter A; = B%/4 — By (1 + k;) as follows:

Casel A;>0

fii(E) = cos (o) (92)
fi(G) = cos (BiE) (9b)
a.6; = [~ Bi/2x V&) (90)
Case2. :A; =0

fii(€) = cos (e (10a)
fil6) = &sin (@) (10b)
o = 1i[-B1/2'/? (10c)
Case3. A;<O0

friE) = (€% + e ) cos(Bify) (11a)
filE) = (e —e 4 )sin (B&) (11b)
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