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H I G H L I G H T S

• A data-driven/model-based method to lithium-ion battery prognostics is proposed.

• It employs sparse Bayesian learning (model-based) to infer capacity from features.

• It adopts particle filters (data-driven) to predict remaining useful life (RUL).

• RUL prediction involves the use of single or multiple capacity fade models.
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A B S T R A C T

This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid
data-driven/model-based method is employed for remaining useful life assessment. The method is developed on
and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications ex-
hibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be
stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates
appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method
enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules:
1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a
recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting
remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells
from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model
particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade
behavior switches between multiple fade models.

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in consumer electro-
nics, such as cell phones and laptops, and in transportation applica-
tions, such as hybrid and electric vehicles. Recently, Li-ion batteries
have found use in implantable medical devices such as neuro-
stimulators for the relief of chronic pain and deep brain stimulators for
the treatment of Parkinson's disease. As a Li-ion battery cell ages, the
decrease of capacity and the increase of internal resistance degrade the
electrical performance of the cell by means of energy and power losses
[1]. Capacity, which quantifies the total amount of energy stored in a
fully charged cell, is an important indicator of the state of health (SOH)
of the cell [1–3]; remaining useful life (RUL), also called remaining

longevity, refers to the available service time left before the capacity
fade reaches an unacceptable level [4]. Accurately tracking these
parameters allows battery management system (BMS) to perform pre-
dictive maintenance/control of a cell through concurrent estimation of
the cell SOH (diagnostics) and prediction of the cell RUL (prognostics).

Recent literature reports a variety of approaches to estimating the
capacity of a Li-ion battery cell in operation. In general, these ap-
proaches can be categorized into 1) adaptive filtering approaches
[1,2,5–11], 2) coulomb counting approaches [12–15], 3) neural net-
work approaches [16–18], and 4) kernel regression approaches
[19–21]. The capacity estimation of a cell by most of these existing
approaches only requires readily available measurements (i.e., voltage,
current and temperature) acquired from the cell. A more recent
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development in the kernel regression category was a sparse capacity
estimator based on sparse Bayesian learning [22], and the estimator is a
kernel regression model that approximates the relationship between the
capacity of a battery cell and five characteristic features extracted from
a capacity versus voltage function, Q(V), or charge curve [22,23]. The
capacity estimator, as a highly sparse regression model, was applied to
infer the capacity of Li-ion battery designed for use in implantable
medical devices, and achieved satisfactory estimation accuracy on lab
and post-explant Li-ion cells cycled with a nominally weekly discharge
rate [22].

Extensive research has been conducted on RUL assessment of a
general engineered system with an emphasis on modeling the RUL
distribution. In general, three categories of approaches have been de-
veloped that enable continuous updating of system health condition
and RUL distribution: (i) model-based approaches [24–26], (ii) data-
driven approaches [27–29], and (iii) hybrid approaches [30,31]. These
approaches, although not developed specifically for Li-ion battery
prognostics, can generally be adapted for RUL assessment of Li-ion
battery. Research devoted to developing new approaches for Li-ion
battery prognostics was mainly conducted by researchers in the prog-
nostics and health management (PHM) society. A Bayesian framework
with particle filter was proposed for RUL prediction of Li-ion battery
based on impedance measurement and by updating an empirical ca-
pacity fade model that employs a single exponential function [32]. A
similar attempt with impedance measurement was later made with the
use of recurrent neural network [33]. In order to eliminate the reliance
of battery prognostics on impedance measurement equipment, re-
searchers developed various model-based approaches that predict RUL
by extrapolating a capacity fade model [14,34–39]. An empirical ca-
pacity transition model was created to capture the degradation (via the
use of coulombic efficiency) and self-recharge (via the use of an ex-
ponential function) of a battery cell, and the capacity transition model
was updated using particle filter for RUL prediction [34]. Two inter-
esting attempts on battery prognostics were made to improve the ac-
curacy of the single exponential function in capacity fade modeling
[35,36]. The first attempt developed a new empirical model consisting
of two exponential functions and applied the new model to enable ac-
curate RUL prediction with particle filter [35]. The second attempt
employed relevance vector machine (RVM) to assist an empirical model
(i.e., a sum of exponential and power functions) with accurately re-
presenting the capacity fade behavior of Li-ion battery [36]. Particle
filter often directly treats the transition prior (i.e., without the use of
prior measurements) as the proposal importance density used for
drawing new particles. This treatment makes the implementation of
particle filter convenient and computationally efficient but may cause a
rapid loss of particle diversity, known as particle degeneracy. To miti-
gate particle degeneracy and ensure effective model updating and ac-
curate RUL prediction, researchers have made attempts to derive better
proposal importance densities by incorporating recent measurements of
cell capacity. These attempts generated proposal importance densities
by employing unscented Kalman filter [37], Gauss-Hermite Kalman
filter [14], and spherical cubature integration-based Kalman filter [38].
In particular, the integration of Gauss-Hermite Kalman filter with par-
ticle filter resulted in the so-called Gauss-Hermite particle filter, which
was applied to predict the RUL distribution of implantable Li-ion bat-
tery [14]. This model-based prognostics approach produced accurate
prediction of how long a Li-ion battery cell will perform in an im-
plantable application before the cell capacity fades to an unacceptable
level. More recently, sigma-point Kalman filter was proposed to update
empirical capacity fade models for RUL prediction in the presence of
additive Gaussian (process and measurement) noises [39] whose var-
iances may differ from one cell to another. Under this Gaussian as-
sumption, the use of particle filter that would require more computa-
tional effort than Kalman filter was shown to be unnecessary and may
lead to less accurate RUL prediction [39].

When a Li-ion battery is used as the power source in an implantable

medical device, it is very important to be able to track the capacity fade
of the battery and assess its RUL throughout the lifetime. This can
provide information to the patient and his/her health care provider
regarding when and how a replacement of the device might be needed.
The information could be crucial for ensuring device operation and
minimizing therapy interruptions. The need for predictable capacity
fade models and ability to predict RUL is particularly significant given
long targeted lifetime of implanted devices (typically 10 years; up to 25
years in some cases) and large variation in use conditions (many cycles
versus few cycles over a certain calendar time) depending on the
therapy needs. Examples of implantable medical devices that may be
powered by a Li-ion battery include neurological stimulators, spinal
stimulators, cardiac stimulators such as pacemakers and defibrillators,
and diagnostic devices such as cardiac monitors. In this paper, a hybrid
data-driven/model-based method is employed for online RUL assess-
ment of Li-ion batteries in implantable medical devices. The hybrid
method integrates sparse Bayesian learning (data-driven) with re-
cursive Bayesian filtering (model-based) to enable real-time inference
of capacity from charge-related features and prediction of RUL from
recursive updating and extrapolation of capacity fade models. A generic
particle filter is adopted to implement recursive Bayesian filtering for
batteries whose capacity fade behavior can be represented by a single
fade model, and a multiple model particle filter (MMPF) with fixed-lag
smoothing is proposed for batteries whose capacity fade behavior
switches between multiple fade models. The effectiveness of the pro-
posed method is demonstrated by leveraging daily cycling data from
eight fresh cells from Medtronic, PLC (hereafter referred to as the MDT
cells) as well as eight fresh/post-explant cells from Manufacturer X
(hereafter referred to as the Mfg. X cells). A large difference in the
capacity fade behavior is seen between the two manufacturers' data sets
used in this paper and hence these data sets serve as excellent test cases
for developing robust prognostic techniques applicable to wide variety
of fade characteristics.

The reminder of this paper is organized as follows. Section 2 pre-
sents the fundamentals of the proposed method. The method is applied
to online capacity estimation and RUL prediction of Li-ion batteries
used in implantable applications. Section 3 discusses the experimental
results of this application. The paper is concluded in Section 4.

2. Technical approach

Given the current and voltage signals measured from a cell oper-
ating under a typical use condition and a discrete-time state space
model that describes the capacity fade behavior of the cell, we aim at
estimating the capacity of the cell at every charge/discharge cycle and
predicting its RUL, i.e., how long the cell is expected to operate before
its capacity falls below an unacceptable level (or a capacity threshold).
The subsequent sections present our proposed prognostic method to
accomplish this online task. As shown in Fig. 1, the proposed prognostic
method consists of two essential modules: 1) sparse Bayesian learning,
which automatically learns (from a training data set) a mapping from
charge-related features to capacity measurement; and 2) recursive
Bayesian filtering, which recursively updates an empirical capacity fade
model with the capacity measurement and extrapolates the model for
prediction of RUL. In what follows, the two modules will be explained
in further detail. Section 2.1 describes the sparse Bayesian learning
scheme for capacity estimation; and Section 2.2 presents the recursive
Bayesian filtering technique for RUL prediction.

2.1. Sparse Bayesian learning of capacity (module 1)

Sparse Bayesian learning or RVM [22,40] will be employed to train
a sparse capacity estimator that learns the complex mapping from the
feature (z) space to the capacity measurement (y) space (see Fig. 2).
Suppose we have a training data set {zj, yj}, j = 1, 2, …, M, consisting
of M input-output pairs from training cells. The sparse measurement
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