

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient $Li_2MnO_{3-\delta}$ obtained from pristine Li_2MnO_3

Xiao Tan, Rui Liu, Congxin Xie, Qiang Shen*

Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- $\bullet~Li_2MnO_{3.8}$ is obtained from Li_2MnO_3 by the NaBH_4-assisted heat-treatment at 380 °C.
- The modified structural properties of oxygen-deficient Li₂MnO₃₋₈ are obvious.
- The reversible capacity of Li₂MnO_{3-δ} is ca. 20 times as large as that of Li₂MnO₃.
- Gradual electrochemical activations of Li_2MnO_3 and $Li_2MnO_{3\cdot\delta}$ are almost the same.
- A cationic-anionic redox mechanism explains the gradual activation of Li₂MnO_{3-δ}.

ARTICLE INFO

Keywords:

Lithium-rich manganese(IV) oxide Li₂MnO₃ Oxygen-deficient Li₂MnO_{3- δ} Sodium borohydride NaBH₄ Electrochemical activation Lithium-ion batteries

ABSTRACT

Lithium-rich manganese(IV) oxide Li₂MnO₃ has hardly any activity as the cathode active substance of lithiumion batteries (LIBs) but its reversible capacity can be greatly improved by introducing oxygen deficiencies. After the solid-state heat treatment of nanocrystalline Li₂MnO₃ by sodium borohydride (NaBH₄), the resulting Li₂MnO₃₋₈ crystallites comparatively acquire distinguishable appearances in color and shape and slight differences in surface composition and lattice structure. As a LIB cathode within the potential range of 2.5–4.7 V, at 20 mA g⁻¹ pristine Li₂MnO₃ gives the specific discharge capacities of 3.3, 5.0 and 7.4 mAh·g⁻¹ in the 1st, 10th and 100th cycles, while the derivative Li₂MnO₃₋₈ delivers the relatively high values of 64.8, 103.8 and 140.2 mAh·g⁻¹ in the 1st, 10th and 120th cycles, respectively. Aside from the similar phenomenon of gradual electrochemical activation, substituting Li₂MnO₃₋₈ for Li₂MnO₃ means the great enhancements of charge-transfer ability and electrochemical performances. Especially, the cationic-anionic redox mechanisms of Li₂MnO₃₋₈(1-*x*) LiMO₂₋₈ are similar to each other, suggesting a possible solution to prepare high-performance *x*Li₂MnO₃₋₈(1-*x*) LiMO₂ solid solutions for application purposes.

1. Introduction

Cathode materials with high capacity, low cost and long lifespan play an important role in their commercialization for lithium-ion batteries (LIBs) [1-3]. Ever since the demonstration of lithium-rich

manganese-based layered oxides or solid solutions, $xLi_2MnO_3(1-x)$ LiMO₂ (e.g., M = Ni_{1/3}Co_{1/3}Mn_{1/3}), for next generation high-capacity LIB cathodes [4–6], their electrochemically "inert" constituent Li₂MnO₃, with a low reversible capacity and/or a poor long-term cycling, has been regarded as an ideal model to investigate structural and

E-mail address: qshen@sdu.edu.cn (Q. Shen).

https://doi.org/10.1016/j.jpowsour.2017.11.004

^{*} Corresponding author.

Received 17 August 2017; Received in revised form 21 October 2017; Accepted 2 November 2017 0378-7753/ © 2017 Elsevier B.V. All rights reserved.

electrochemical properties of the lithium-rich layered compounds. This is simply due to the fact that, similar to the formula of "active" component LiMO₂, component Li₂MnO₃ can also be re-written as Li[Li₁/ $_{3}Mn_{2/3}$]O₂ to describe the additional lithium occupation in transition metal layers. However, this lithium arrangement can cause both phase transition and loss of reversible capacity during galvanostatic charge-discharge cycling. Therefore, if component Li₂MnO₃ merely functionalizes to stabilize lattice structure of the active component Li[Ni₁/ $_{3}Co_{1/3}Mn_{1/3}$]O₂, with a theoretical capacity feature of a solid solution 0.5Li₂MnO₃·0.5Li[Ni₁/ $_{3}Co_{1/3}Mn_{1/3}$]O₂, with an actual capacity higher than 200 mAh·g⁻¹, is extremely difficult to understand, especially at a cut-off voltage lower than 4.5 V.

Well-crystallized Li₂MnO₃ has a high theoretical capacity of 459 mAh·g⁻¹ calculated according to a fictitious two-electron transfer mechanism. Considering the nearly "inert" nature of Li₂MnO₃ in practice, two well-recognized aspects should be mentioned: (i) further oxidation of Mn⁴⁺ in the octahedral coordination of Li₂MnO₃ could hardly proceed even within the electrochemical window of 2.5–4.8 V, and (ii) origin of the limited capacity of Li₂MnO₃ (i.e., < 30 mAh·g⁻¹) is still a controversial issue so far. Robertson and Bruce attribute the low electrochemical activity to the ion-exchanging of Li₂MnO₃-intercalated Li⁺ with electrolyte-generated H⁺, while Komaba et al. explain the limited capacity contribution using the electrochemical redox reaction of gaseous O₂ occurring at 4.5 V on Li₂MnO₃ electrode surface [7,8].

Comparing to Li₂MnO₃, LIB cathode material Li₄Mn₂O₅ possesses a high electrochemical activity and displays a discharge capacity as high as 355 mAh·g⁻¹, assigned to the combined contributions of Mn³⁺/Mn⁴⁺, Mn⁴⁺/Mn⁵⁺ and O²⁻/O⁻ redox couples [9]. In formula Li₂MnO₃, the partially replacing of Mn⁴⁺ with Ru⁴⁺ successfully induces the formation of oxygen deficiencies and thus the electrochemical redox reactions of Mn³⁺/Mn⁴⁺, Ru⁴⁺/Ru⁵⁺ and O²⁻/O⁻ couples could account for the high reversible capacity (i.e., 220 mAh·g⁻¹) of modified Li₂Ru_{1-y}Mn_yO₃ cathodes reasonably [10]. Similarly, Li₂MnO₃-like compounds such as Li₂Ru_{1-y}Sn_yO₃, Li₂Ru_{1-y}Ti_yO₃ and Li₂IrO₃ have been further proved to endow with both cationic Mⁿ⁺ and anionic O₂ⁿ⁻ redox activities for their high-capacity characteristics [11–13].

Differing with Tarascon's designs of Li_2MnO_3 -like compounds [11–13], optimized synthesis or structural modification of pristine Li_2MnO_3 should be mentioned, which relates to the generation of a commonly defined Mn^{3+} -doping and oxygen-deficient form (i.e., $\text{Li}_2\text{MnO}_{3-8}$) for the improvement of electrochemical activity. For example, after a low-temperature treatment of pristine Li_2MnO_3 by metal hydride (i.e., CaH_2 or LiH), the resulting oxygen-deficient $\text{Li}_2\text{MnO}_{3-8}$ could deliver an extremely high initial discharge capacity of 388 mAh·g⁻¹ at 10 mA g⁻¹ but its improvement of the cycling stability was urgently needed [14]. Another example is the oxygen-deficient structure obtained via carbonthermal reduction, which presented a good cycling stability of the cathode $\text{Li}_2\text{MnO}_{3-8}$ but possessed a low specific capacity (e.g., 50th cycle, 60 mAh·g⁻¹, 10 mA g⁻¹) in each cycle therein [15].

Generally, introducing oxygen vacancies can intrinsically improve the electron/ion conductivity and electrochemical performance of transition metal oxides [16–21], and aroused by this, in this paper solid-state sodium tetrahydroborate (NaBH₄) was used as reducing agent to obtain the oxygen-deficient structure of Li₂MnO_{3.8} from pristine Li₂MnO₃ via a thermal treatment route. Although acquiring a low discharge capacity of no more than 7.4 mAh·g⁻¹ at 20 mA g⁻¹, the gradual electrochemical activation of pristine Li₂MnO₃ was detected. By comparison, the derived Li₂MnO_{3.8} has almost the same increasing trend of electrochemical activation, and its high reversible capacity and superior cycling performance (e.g., 140.2 mAh·g⁻¹, 20 mA g⁻¹, 120th cycle) were investigated in detail in context.

2. Experimental

2.1. Syntheses of pristine Li_2MnO_3 and its derived $Li_2MnO_{3-\delta}$

All the chemicals are of analytical grade and were used without further purification. Ultrapure water (18.2 M Ω cm) was used throughout samples preparation.

Syntheses of pristine Li2MnO3 and its derived Li2MnO3-8 were described as below. Firstly, amorphous MnO₂ boxes were freshly prepared according to our previous results [22], which was used as a starting material to react with solid-state lithium carbonate Li₂CO₃ at the Li: Mn elemental molar ratio of 2.05: 1.00. Prior to the solid-state reaction. MnO₂ and Li₂CO₃ powders were mixed by mechanical milling in ethanol for 2 h and then dried at 80 °C overnight. Secondly, the admixtures of MnO2 and Li2CO3 were heated under air-atmosphere at 800 °C for 8 h, resulting in pristine Li₂MnO₃. Thirdly, pristine Li₂MnO₃ was thoroughly mixed with powdered sodium tetrahydroborate (NaBH₄) at a mass ratio of 1: 2 by mechanical milling in ethanol for 2 h and dried at 80 °C overnight, and then placed into a nitrogen-atmosphere tube furnace at 380 °C for 6 h. After cooling down to room temperature naturally, the admixture was washed with methanol and water for the complete removal of impurities and then dried at 80 °C overnight, resulting in the oxygen-deficient sample referred to as a chemical formula of Li₂MnO₃₋₈.

2.2. Structural characterization

The chemical compositions of as-prepared Li₂MnO₃ and its derived Li2MnO3-8 were determined using an inductively coupled plasma/ atomic emission spectrometer (ICP/AES). X-ray diffraction (XRD) measurements were performed on a Rigaku D/max-2400 powder X-ray diffractometer with Cu - Ka radiation (40 kV, 120 mA) and 20 range of 10-80° (0.08° step per 25 s), and program Xpert HighScore Plus 3 was used for X-ray Rietveld analyses. Raman spectra were recorded on a LABRAM-HR confocal laser micro-Raman spectrometer employing a 20 mW laser at 632.8 nm. Scanning electron microscopy (SEM) observation was conducted on a Hitachi SU8010, fitted with a field emission source and operating at an accelerating voltage of 15 kV. Lowor high-resolution transmission electron microscopy (TEM or HR TEM) and selected area electron diffraction (SAED) measurements were performed on a JEM 2100 microscope (200 kV). X-ray photoelectron spectroscopy (XPS) analyses were carried out using a VG ESCALAB 220i-XL UHV surface analysis system with a monochromatic Al Ka Xray source.

2.3. Electrochemical characterization

Working electrodes were freshly prepared, described as below. At first, admixture of active substance (i.e., Li_2MnO_3 or Li_2MnO_{3-6} ; 70 wt %), acetylene black (20 wt%) and polyvinylidene fluoride (PVDF; 10 wt %) were ground, followed by the addition of N-methylpyrrolidone to form uniform slurry. Then, the resulting slurry was cast onto an aluminum foil and dried at 80 °C for 12 h in a vacuum desiccator. And then, the aluminum foil was cut into discs (12 mm in diameter) and used as LIB cathodes. CR2032-type coin cells were assembled in an argon-filled glovebox, using metallic lithium, nickel foam, Celgard 2300 microporous membrane and commercial LBC 305-01 LiPF₆ solution as counter electrode, current collector, separator and electrolyte, respectively.

All the electrochemical experiments were performed at 30 °C, and an electrochemical window of 2.5–4.7 V (vs. Li⁺/Li and hereafter) was selected unless otherwise specified. Galvanostatic cycling tests were conducted on a LAND CT2001A battery system, and cyclic voltammetry (CV) tests were carried out on a LK 2005A electrochemical workstation at 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) tests were measured using an EG&G PAR 273A electrochemical workstation Download English Version:

https://daneshyari.com/en/article/7726315

Download Persian Version:

https://daneshyari.com/article/7726315

Daneshyari.com