ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrolyte dependence of the performance of a Na₂FeP₂O₇// NaTi₂(PO₄)₃ rechargeable aqueous sodium-ion battery

Kosuke Nakamoto ^a, Yusuke Kano ^a, Ayuko Kitajou ^b, Shigeto Okada ^{b, *}

- ^a Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan
- ^b Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan

HIGHLIGHTS

- Na₂FeP₂O₇ with aqueous electrolytes has higher rate capability than non-aqueous.
- Na₂FeP₂O₇ with concentrated electrolytes has larger capacity than diluted.
- NaTi₂(PO₄)₃ with NaNO₃ aq. shows irreversiblility with corrosive side reactions.

ARTICLE INFO

Article history: Received 20 April 2016 Received in revised form 14 June 2016 Accepted 16 July 2016

Keywords: Sodium-ion battery Aqueous electrolyte Sodium iron pyrophosphate Sodium titanium phosphate

ABSTRACT

Aqueous sodium-ion battery is attractive, because of the low cost and the high safety. However, since the electrochemical window of the aqueous electrolyte is narrow, there have been few reports concerning the optimum cathode materials for use in aqueous sodium-ion batteries up to now. This work focused on Na₂FeP₂O₇ as a cathode material for a novel aqueous sodium-ion battery, and investigated the electrolyte dependence of the performances of a Na₂FeP₂O₇//NaTi₂(PO₄)₃ full-cell. The battery performances such as the rate capability and cyclability of Na₂FeP₂O₇//NaTi₂(PO₄)₃ full-cell with 2 M Na₂SO₄ or 4 M NaClO₄ aqueous electrolyte were better than that with the non-aqueous electrolyte. However, a Na₂FeP₂O₇//NaTi₂(PO₄)₃ full-cell with 4 M NaNO₃ aqueous electrolyte exhibited a large irreversible capacity due to the corrosive side reaction.

© 2016 Published by Elsevier B.V.

1. Introduction

To achieve the efficient utilization of the renewable energies, such as solar and wind power, the large-scale grid energy storage for load leveling system is an indispensable device. At present, there are Ni-Cd battery, Ni-metal hydride (MH) battery, Li-ion battery and sodium-sulfur battery as the commercially available rechargeable batteries. Among them, the Li-ion battery has certain advantages, such as high voltage and high energy density. However, the performance needs to be improved with regard to battery cycle life, production costs and safety. In particular, high-quality lithium provided by the sun drying of the salt lake is relatively costly, and the annual production in the world is insufficient. Na-ion batteries, which have a working mechanism similar to that of Li-ion batteries, have attracted much interest as a power source for large-scale grid energy storage, because of the low cost and abundance of sodium.

* Corresponding author.

E-mail address: s-okada@cm.kyushu-u.ac.jp (S. Okada).

However, both Li- and Na-ion batteries have an associated safety issue: at elevated temperatures, charged oxide cathodes such as Li_xCoO₂ readily release oxygen gas, which can cause the exothermic reaction with the organic electrolytes [1,2]. In addition, conventional organic electrolytes are low conductive and fairly expensive. To overcome these drawbacks, aqueous Na-ion batteries with noninflammable, high conductive and inexpensive aqueous electrolytes rather than organic electrolytes have been proposed. Recently, Aguion Energy Ltd. released a commercially-available energy storage system composed of a Na₄Mn₉O₁₈ (Na_{0.44}MnO₂) cathode, activated carbon (AC) anode and Na₂SO₄ aqueous electrolyte [3,4]. This Na_{0.44}MnO₂//AC system is not a rocking-chair type cell, but a hybrid capacitor. That is, the cathode reaction involves the intercalation/deintercalation of Na⁺ ions into/from the Na_{0.44}MnO₂ bronze matrix, while the anode reaction consists of the adsorption/desorption of SO_4^{2-} on the surface of AC. Since the rechargeable capacity of this hybrid capacitor is restricted by the concentration of SO_4^{2-} anion in the electrolyte, the rechargeable capacity per weight or volume is smaller than that of a rockingchair type cell.

Although several cathode active materials for the aqueous Naion battery have been proposed in recent years [5-16], reports of the anode active materials are still limited. Among them, minormetal free NASICON-type NaTi₂(PO₄)₃ (NTP) is a rare and valuable anode example for the aqueous Na-ion battery [5,6]. The flat charge/discharge profile, corresponding to Ti³⁺/Ti⁴⁺ redox reaction. locates within the electrochemical window of water. As the most inexpensive 3d transition metal, iron-based cathode active materials have also been proposed. In particular, olivine-type NaFePO₄, as the Na counterpart of LiFePO₄ is promising. However, it cannot be obtained by the direct synthesis method, because electrochemically inactive maricite-type NaFePO₄ is more stable than olivine-type NaFePO₄. Therefore, the only synthetic route to olivine-type NaFePO₄ is ion exchange between Na⁺ and Li⁺ in LiFePO₄ [17,18]. Because the ion-exchange process is relatively costly, concerted efforts are being devoted to finding new low-cost materials and manufacturing processes.

Our own group has focused on $Na_2FeP_2O_7$ as a promising cathode material for aqueous Na-ion batteries, because $Na_2FeP_2O_7$ can be obtained by simple, conventional solid state processes [19–23]. This compound exhibits a reversible specific capacity of approximately 57 mAh g^{-1} with an average voltage of -0.05 V vs. SCE, and therefore has a redox potential within the electrochemical window of water [22]. In the present work, we evaluated the electrochemical performance of $Na_2FeP_2O_7$ as a cathode for aqueous Na-ion batteries, in conjunction with typical Na-salt electrolytes, such as 0.5-4 M Na_2SO_4 , $NaNO_3$ and $NaClO_4$ solutions. In addition, we investigated the electrochemical performance of an aqueous $Na_2FeP_2O_7//NaTi_2(PO_4)_3$ full-cell with various Na_3 salt concentrations.

2. Experimental

2.1. Materials synthesis

As cathode active material, Na₂FeP₂O₇ was synthesized according to a previously reported procedure [19]. Briefly, stoichiometric amounts of NaH₂PO₄ and Fe(COO)₂·2H₂O (Wako Pure Chemical Industries, Ltd.) were placed in an alumina container along with 3 mm φ zirconia balls. The precursor was subsequently prepared by wet ball-milling in acetone at 400 rpm for 2 h. After evaporating the acetone to obtain a dry mass, the precursor was ground in an agate mortar and pressed into cylindrical pellets. These pellets were sintered at 600 °C for 10 h under Ar containing 5% H₂. After cooling to ambient temperature, the desired Na₂FeP₂O₇ powder (as-prepared Na₂FeP₂O₇) was obtained.

On the other hand, anode active material, $NaTi_2(PO_4)_3$ was prepared from a stoichiometric mixture of Na_2CO_3 (Kishida Chemical Co., Ltd.), titanium (IV) butoxide (Sigma-Aldrich Co. LLC.) and $NH_4H_2PO_4$ (Nacalai Tesque, INC.) using the Pechini method [5,24]. This precursor mixture was decomposed at 350 °C for 3 h in air to eliminate the ammonia and organic components. The resulting powder was ground, pressed into cylindrical pellets and calcined at 800 °C for 12 h in air. The products were characterized by X-ray powder diffraction (XRD, 50 kV and 300 mA, Cu-K α , RINT 2100HLR/PC, Rigaku Corporation) while the chemical composition of the $Na_2FeP_2O_7$ was ascertained using inductively coupled plasma-atomic emission spectroscopy (ICP-AES; PerkinElmer Optima 8300). In ICP measurement, the powder was dissolved in a mixture of 30 wt% H_2O_2 and conc. aqueous HCl.

2.2. Electrochemical properties

To improve the electronic conductivity, 25 wt% acetylene black

(AB) was subsequently added to 70 wt% Na₂FeP₂O₇ powder and the mixtures were dry ball-milled at 300 rpm for 10 h. In addition to the carbon coating, the carbothermal annealing for the obtained Na₂FeP₂O₇/C composite was performed at 600 °C for 10 h under Ar containing 5% H₂ [21]. Hereinafter, the Na₂FeP₂O₇/C carbon composites after carbon coating and carbothermal annealing are referred to as CC and CT samples, respectively. In combination with 5 wt% polytetrafluoroethylene binder (Polyflon PTFE F-104, Daikin Industries, Ltd.), the cathode pellets were fabricated from the CC and CT carbon composites (95 wt%), respectively.

On the other hand, 70 wt% $NaTi_2(PO_4)_3$ anode powder was combined with 25 wt% AB and ball-milled at 400 rpm for 1 h. Then, for the obtained $NaTi_2(PO_4)_3/C$ composite, the carbothermal treatment was done at $800\,^{\circ}C$ for 1 h under N_2 [5]. To fabricate the anode pellet, 95 wt% $NaTi_2(PO_4)_3/C$ carbon composite was fabricated from with 5 wt% PTFE binder.

They were subsequently punched into discs (10 mm ϕ). These discs were sandwiched between sheets of nickel mesh (Thank Metal Co., LTD.). A three-electrode electrochemical cells incorporating various aqueous electrolytes were used in cyclic voltammetry and galvanostatic discharge/charge tests. An Ag-AgCl electrode with saturated KCl (RE-6, BAS Inc.) and pure zinc (99.9%, Nilaco Corp.) were used as the reference and counter electrodes, respectively. The electrochemical performances of the Na₂FeP₂O₇// NaTi₂(PO₄)₃ full-cell with various aqueous electrolytes were evaluated by a 2032 coin-type cell setup. The cathode/anode mass balance in this full-cell was 2:3 and the cathode/anode capacity balance was approximately 1:3. Employed aqueous electrolytes consisted of 0.5 M Na₂SO₄, 2 M Na₂SO₄, 1 M NaNO₃, 4 M NaNO₃, 1 M NaClO₄ and 4 M NaClO₄, respectively. Dissolved oxygen was purged from each aqueous electrolyte by bubbling Ar, since the Na₃Ti₂(PO₄)₃ generated on charging process is readily oxidized by dissolved oxygen in an aqueous solution [25]. The electrochemical performance of the Na₂FeP₂O₇ was also confirmed in a 2032 cointype cell with non-aqueous electrolyte (1 M NaClO₄ in propylene carbonate (PC), Tomiyama Pure Chemical Industries, LTD.) and a polypropylene separator and Na metal (Sigma-Aldrich Co. LLC.). The cell incorporating the non-aqueous electrolyte and Na metal was assembled in an Ar-filled glove box (dew point < -80 °C). Cyclic voltammetry was performed with a Versastat 3 (AMETEK, Inc.). Galvanostatic charge/discharge tests were carried out using a cycler (NAGANO & Co., Ltd.) at a constant current density.

3. Result and discussion

3.1. Structural characterization of Na₂FeP₂O₇

The obtained samples were characterized by XRD, generating the patterns presented in Fig. 1. The Na₂FeP₂O₇ powder was identified as triclinic with P-1 diffraction pattern consistent with Na_{1.56}Fe_{1.22}P₂O₇ (ICDD # 83-0255), with no impurity phases detectable.

The XRD profile of the CC sample (Fig. 1 (b)) contained peaks that were broader than those of the as-prepared $Na_2FeP_2O_7$, indicating the lower crystallinity. In contrast, the XRD peaks of the CT sample became sharper following the carbothermal treatment, suggesting that the crystallinity of the $Na_2FeP_2O_7$ was improved by annealing at $600~^{\circ}C$.

3.2. Electrochemical performances of a Na₂FeP₂O₇ cathode against Zn counter electrode

Fig. 2 compares the initial and second charge-discharge profiles of CC and CT cathodes in 2 M Na₂SO₄ aqueous electrolyte. These electrochemical measurements were carried out within a potential

Download English Version:

https://daneshyari.com/en/article/7726980

Download Persian Version:

https://daneshyari.com/article/7726980

<u>Daneshyari.com</u>