Journal of Power Sources 326 (2016) 595-603

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrochemical characterization of MnO₂-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors

Axel Gambou-Bosca, Daniel Bélanger^{*}

Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada

HIGHLIGHTS

- Ca²⁺ and Li⁺ ions have similar effect on the electrochemical utilization of MnO₂.
- 5 M LiTFSI as "water in salt" electrolyte for MnO₂ electrode.
- MnO₂ is characterized by a potential stability window of 1.4 V in 5 M LiTFSI.
- MnO₂ exhibits a specific capacitance of 239 F g⁻¹ in 5 M LiTFSI at 2 mV s⁻¹.

ARTICLE INFO

Article history: Received 8 February 2016 Received in revised form 15 April 2016 Accepted 19 April 2016 Available online 29 April 2016

Keywords: MnO₂ Aqueous electrolyte Water-in-salt electrolyte LiTFSI Electrochemical supercapacitor

G R A P H I C A L A B S T R A C T

ABSTRACT

The effect of the electrolyte on the electrochemical utilization of manganese dioxide as active material for electrochemical capacitor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. MnO_2 -based composite electrodes were characterized in salt-in-water (0.65 M K₂SO₄, 5 M LiNO₃, 0.5 M LiNO₃ and 0.5 M Ca(NO₃)₂) and water-in-salt (5 M LiTFSI (lithium bistrifluoromethanesulfonimide)) electrolytes. Firstly, no effect of the cation valence on the specific capacitance was observed as similar values were measured in 0.5 M LiNO₃ and 0.5 M Ca(NO₃)₂ aqueous solutions at both low and high scan rate, when a MnO₂-based composite electrode was cycled in the pseudocapacitive potential region. Secondly, it was found that in 5 M LiTFSI, a MnO₂ electrode is characterized by an extended potential stability window of about 1.4 V and exhibits a high specific capacitance of 239 F g⁻¹ per active material mass at a scan rate of 2 mV s⁻¹. However due to the low ionic conductivity of this solution, the rate capability is limited at high scan rate.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Manganese dioxide-based electrode is characterized by its benign nature, good stability in aqueous electrolyte and a theoretical specific capacitance as high as 1233 F g⁻¹ for one electron redox reaction between Mn⁴⁺ and Mn³⁺ [1–10]. Due to these attractive features, MnO₂ has been studied as electrode material in

* Corresponding author. E-mail address: belanger.daniel@uqam.ca (D. Bélanger).

http://dx.doi.org/10.1016/j.jpowsour.2016.04.088 0378-7753/© 2016 Elsevier B.V. All rights reserved. symmetric and in asymmetric electrochemical capacitor [1,4,5,11-26]. Moreover, MnO₂ has been synthesized under many amorphous [9,27-31] and crystalline [1,6,7,23,32,33] forms. Their specific capacitance values indicated a 20% electrochemical utilization of the metal oxide in aqueous electrolytes [3,6,9,34-37], for thick MnO₂-based composite electrodes prepared with a polymeric binder and a conductive additive [8,37]. This limited specific capacitance is mainly due to the poor ionic and electronic conductivity of manganese dioxide [8,24]. To improve MnO₂ electrochemical utilization, aqueous electrolytes containing bivalent

cations such as Ca^{2+} or Mg^{2+} have been proposed [38–42]. Although the concentration of Na^+ ions was twice that of Ca^{2+} ions, the specific capacitance measured in 0.1 M Ca(NO₃)₂ was 1.6 times higher than in 0.2 M NaNO₃ [38,39]. The specific capacitance of a MnO₂ electrode could be improved by replacing monovalent cations by bivalent cations, because the latter can contribute to store two electrons [40]. Later, an increase of the specific capacitance was observed with an increase of charge of the solution cations (for 0.1 M NaNO₃, Mg(NO₃)₂ and La(NO₃)₃) [41]. On the other hand, Brousse and coworkers [23,34] have reported superior MnO₂ electrochemical utilization in presence of Li⁺ ions, among monovalent cations. They reported a specific capacitance of 145 F g^{-1} in 5 M LiNO₃ [34] that corresponds to ~220 F g^{-1} (per active material mass), which is close to the capacitance value recorded in $Mg(NO_3)_2$ [41]. Furthermore, Anouti and coworkers [43], reported the electrochemical performance of different MnO₂ materials in ten lithium salts electrolytes with a concentration yielding the maximum ionic conductivity. Although the best capacitance retention (when cycling up to 50 mV s^{-1}) was obtained with aqueous 5 M LiNO₃ and 1.8 M LiClO₄, good pseudocapacitive behavior was also observed in 2 M Li₂SO₄ and 2.5 M LiTFSI.

Since aqueous electrolytes are only useful in hybrid or asymmetric devices, which can overcome the ~1.23 V thermodynamic limit of water decomposition [12,13], non-aqueous electrolytes are often preferred in symmetric devices [2]. Nonetheless, innovative "water-in-salt" mixtures consisting in a very high concentration of molality 20 m LiTFSI (lithium salt (eg)> bistrifluoromethanesulfonimide) in water have been recently proposed as electrolyte for aqueous lithium-ion battery [44,45]. In "water-in-salt" electrolyte, the number of water molecules in the solvation shell is much lower than that existing for lower salt concentration and the structure of the interphasial region is also very different [44,45]. With this definition, highly concentrated (eg. 5 M) lithium based electrolyte such as LiNO₃ does not fit this class of electrolyte. Moreover, it was suggested that "water-in-salt" electrolyte can increase the voltage window of aqueous electrolytebased lithium-ion battery, and be competitive with non-aqueous electrolytes due to their facile preparation, being safer and environmental friendly [44].

Here, we report the effect of the cation charge on the electrochemical performance of MnO_2 electrode, investigated by cyclic voltammetry and electrochemical impedance spectroscopy, in saltin-water electrolyte (0.65 M K₂SO₄, 0.5 M LiNO₃ and 0.5 M Ca(NO₃)₂) and for the first time in a highly concentrated LiTFSI water-in-salt electrolyte (5 M LiTFSI). Finally, preliminary results of an asymmetric carbon/MnO₂ electrochemical capacitor in the water-in-salt electrode are presented.

2. Experimental section

2.1. Preparation of the manganese oxide materials

Poorly crystalline manganese dioxide was synthesized by precipitation by mixing a 60 ml aqueous solution containing 1.58 g of KMnO₄ with a 100 ml solution containing 3.68 g of Mn(CH₃COO)₂, at 25 °C. The resulting solution was stirred for 6 h during, and a dark-brown precipitate was formed. Once the stirring was stopped, the precipitate was rinsed several times with distilled water and filtered under vacuum. Then, the wet powder was dried at 110 °C for 12 h and milled in an agate mortar [5,8].

2.2. Physical characterization

The crystallographic structure of MnO_2 was characterized by XRD with an X-ray diffractometer (X'Pert system, Philipps) at

 $2\theta = 15 - 85^{\circ}$ using monochromatic Cu K α radiation ($\lambda = 1.541874$ Å) operated at 50 kV/40 mA controlled by X'Pert Data Collector software. SEM micrographs were obtained with a scanning electron microscope (JEOL JSM-7600F) for MnO2 materials as well as for composite electrodes. The nitrogen adsorption-desorption isotherms were measured at 77 K using Autosorb-1 (Quantachrome instruments, USA) controlled by AS1 software. The BET surface area S_{RET} was evaluated using the Brunauer–Emmett–Teller (BET) method. The electrolyte conductivity was measured at 20 °C using a conductivity meter (conductivity meter CDM80). The pH was measured using a pH meter (sympHony, VWR). The ionic conductivity was measured for both water-in-salt and salt-in-water electrolytes with a pH of about 6, except for the $Ca(NO_3)_2$ solution which is one pH unit lower (5.0) than the other solutions. Finally, the electrolyte viscosity was measured at room-temperature for aqueous 5 M LiNO₃ and 5 M LiTFSI solution using a VC-10 viscosimeter (A&D, Japan) with an accuracy of $\pm 1\%$ of reading.

2.3. Electrode preparation

MnO₂ film electrode was prepared by mixing the as-prepared manganese dioxide powder (60 wt%) with 10 wt% PTFE binder (poly(tetrafluoroethylene), Aldrich) and 30 wt% acetylene black carbon (Alfa Aesar) in 1 mL ethanol (Aldrich). A series of composite electrode of 0.25 cm² cold rolled thick film were prepared by pressing at 9×10^5 Pa for 60 s in a stainless steel grid (80 mesh, 0.127 mm, Alfa Aesar) used as current collector. Secondly, a similar procedure was used to prepare the negative carbon electrode, but with a 90:10 ratio of Black Pearls 2000 carbon (BP, 1500 $m^2 g^{-1}$, Cabot) and PTFE. Then, in the asymmetric device, typical loadings of MnO₂ and BP active materials were 2.9 and 9.7 mg cm⁻², respectively. These loadings were calculated by considering the specific voltammetric charge and the appropriate potential windows of each separate electrode active material. Finally, the MnO₂ and BP films (0.25 cm² each) were pressed at 900 MPa on a stainless steel grid.

2.4. Electrochemical characterization

2.4.1. Characterization of composite electrode

Cyclic voltammetry and electrochemical impedance spectroscopy were performed using a standard three electrode cell containing either a 0.65 M K₂SO₄, 5 M LiNO₃, 0.5 M LiNO₃, 0.5 M Ca(NO₃)₂ or 5 M LiTFSI aqueous solution, degassed with purified nitrogen gas at room temperature prior and during the experiment. A composite electrode was used as the working electrode, with platinum gauze and the Ag/AgCl (3 M NaCl) as the counter electrode and the reference electrode, respectively. Each cyclic voltammogram shown below is the 10th cycle that corresponds to a stable electrochemical response. The capacitive behavior of the electrodes was studied by cyclic voltammetry within different potential range at various scan rates between 2 and 200 mV s⁻¹. To calculate the specific capacitance (*C*), the cathodic voltammetric charge (Q) was evaluated by integration of a cyclic voltammogram, and divided by the mass of electrode (m) and the width of the potential window (ΔV):

$$C = Q/m\Delta V \tag{1}$$

The capacitance per mass of MnO_2 was evaluated by subtracting the capacitance contribution of the carbon from the total electrode specific capacitance:

$$C_{\rm MnO2} = (C - yC_{\rm AB})/x \tag{2}$$

Download English Version:

https://daneshyari.com/en/article/7727161

Download Persian Version:

https://daneshyari.com/article/7727161

Daneshyari.com