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h i g h l i g h t s

� The data-driven model is established for battery state-of-charge estimation.
� The neural network model is established for battery state-of-energy estimation.
� The probability based estimation method is employed for battery state estimation.
� The HPPC/DST/UDDS profiles are performed for experiment verification.
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a b s t r a c t

Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex elec-
trochemical devices, their monitoring and safety concerns are key issues for the applications of battery
technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle
control, preventing battery from over-charging and over-discharging and ensuring the safety during its
service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge
(SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to
obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n or-
dered RC equivalent circuit model is employed by combining an electrochemical model to obtain more
accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is
proposed to investigate the relationship between the terminal voltage and the model inputs. To verify
the accuracy and robustness of the proposed model and estimation algorithm, experiments under
different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion
batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed
method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Energy and environmental crisis have long been challenges
facing the world's automobile industry. The grim energy and
environmental situation around the world has accelerated the
strategic transformation of transportation and energy technology.
Therefore, new energy vehicles such as the battery electric vehicles
(BEV), hybrid electric vehicles (HEV), and fuel cell electric vehicles
(FCEV) are generally considered as good candidates to replace
conventional internal combustion engine vehicles. With the ad-
vantages of high energy density, environmentally benign features,

wide operating temperature range, low self-discharge rate and long
cycle life, the lithium-ion batteries have become widely used in
electric vehicles in recent years. Since large numbers of lithium-ion
batteries are composed in pack and the batteries are complex
electrochemical devices with a distinct nonlinear behavior
depending on various internal and external conditions, their
monitoring and safety concerns are key issues for the application of
battery technology [1].

As a key component to the battery power system, the battery
management systems (BMS) are designed to provide monitoring,
diagnosis, control and protecting functions to enhance the opera-
tion of the battery packs [2]. An intelligent BMS is always developed
based on practicality with the characteristics of universality, intel-
ligent, individuation, friendly interaction and has to be extensible
in almost certain cases that more features can be added if
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necessary. Fig. 1 gives a block diagram of key technologies in BMS.
As can be seen from the figure, the key technologies of the BMS can
be summarized into three parts: (1) Battery state estimation. In an
intelligent BMS, the battery performance is not only evaluated by
the state-of-charge (SOC), but also evaluated from the state-of-
energy (SOE) and other indicators to realize a comprehensive and
accurate estimation. (2). Battery equalization. When a battery pack
is first constructed, the capacities of each component cell can be
well matched. However as time goes by, individual cells lose ca-
pacity at different degrees due to temperature variations and other
factors. The weak cells effectively limit the run time of the battery
pack. When the pack is charged, the weak cells reach the over-
charge voltage limit before others, so other cells are not charged
to their maximum available capacity. Likewise, when the pack is
discharged, the weak cells reach their cut-off voltage sooner than
the others and shorten the overall working time of the battery pack.
Therefore the battery equalization circuits and algorithms are
required to extend battery life, improve the cell consistency and
efficiency. (3) Battery safe and efficient management. The battery
management systems on modern electric vehicles are always
distributed structured on high-speed Controller Area Network
(CAN) bus. The battery parameters detection is expanded from
voltage, current and temperature to connection, insulation, smoke,
collision and so on. The fault diagnosis of BMS involves sensor fault,
actuator fault, network fault, over charge, over discharge, over
current, temperature anomaly, insulation fault, uniformity fault
and so on. Battery safe and efficient management also involves safe
charge/discharge control, battery thermal management, key data
storage and analysis.

The SOC which reflects the residual capacity of the battery is not
directly measurable and should be estimated by other approaches.
Many methods have been proposed in the literature for battery
states estimation [3e37]. The coulomb counting (ampere-hour
integral) method is one of the most simple and general way [3].
Low-cost sensors for current measurement are available to achieve
this method, and the required computing of this method is very low
so that it can be generalized in different types of application sce-
narios. This approach is also possible and easy to be combined with

other techniques such as the model based estimation approaches.
However, it has accumulated error since there are inevitable sensor
noise andmeasurement drift. This approach is also hard to calibrate
the initial error and cannot get the precise initial SOC automatically.
The open-circuit voltage (OCV) based method is another approach
to obtain the battery SOC [4e5]. Through this method, batteries are
required to have long time resting in order to reach balance.
Therefore this method is appropriate only when the EVs are park-
ing rather than driving. The artificial neural network (ANN)method
has been employed for SOC estimation in Refs. [6e11]. A remark-
able disadvantage of this method is a great number of data are
needed to train the network and a lot of computations are required.
Meanwhile, the prediction error can be greatly influenced by the
training data and the training methods. To improve the perfor-
mance of SOC estimation, model based estimation approaches such
as the nonlinear observer [12e15], extended Kalman filter (EKF)
[16e21], sigma-point Kalman filter (SPKF) [22e23], adaptive
extended Kalman filter (AEKF) [24e26], unscented Kalman filter
(UKF) [27e30], particle filter (PF) [31e32], unscented particle filter
(UPF) [33], invariant imbedding method [34], sliding mode
observer [35e37] were proposed. With low-complexity the
nonlinear observer can be used when the system is observable. The
Kalman filter series of algorithms can find the optimal solution
provided by nonlinear observer. However these methods require
accurate model parameters, and the system noise and observation
noise must satisfy the Gaussian distribution; otherwise the filter
performance will decrease or even diverge. In Ref. [34], Dong et al.
proposed an online estimator for SOC and parameters estimation
based on the invariant imbedding method. The accuracy and
robustness of the proposed method have been validated under
dynamic working conditions. The sliding mode observer can sup-
press the disturbance andmodeling error, but the chatter cannot be
ignored.

The voltage levels and working plateaus of different types of
batteries are entirely different. Even with the same capacity the
stored energy of the batteries are bound to be very different, which
will cause a corresponding difference in the useful life or mileage of
vehicles. Therefore the SOE is defined to indicate the remaining

Fig. 1. Block diagram of key technologies in BMS.
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