Journal of Power Sources 307 (2016) 146-151

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

An approach for restoring the proton conductivity of sintered tin pyrophosphate membranes for intermediate temperature fuel cells

^a Department of Engineering Technology, The University of Houston, Houston, TX 77204, USA
^b Texas Center for Superconductivity, The University of Houston, Houston, TX 77204, USA

• SnP₂O₇ membranes were fabricated by casting method.

• Starch was used as a pore former and binder for making porous sintered membranes.

• Proton conductivity was enhanced from 9.7×10^{-4} to 0.061 S cm⁻¹ at 225 °C.

• An IT-FC (5 cm²) generated a peak power density of 78 mW cm⁻² at 225 °C.

• An IT-FC (5 cm²) steadily ran at 100 mA cm⁻², 0.6 V for 45 h at 225 °C.

ARTICLE INFO

Article history: Received 3 July 2015 Received in revised form 22 October 2015 Accepted 14 December 2015 Available online 4 January 2016

Keywords: Intermediate temperature fuel cells Tin pyrophosphate Sintering Proton conductivity Restore

ABSTRACT

Tin pyrophosphate (SnP₂O₇) membranes need a sintering process to achieve a required mechanical strength as the electrolyte of intermediate temperature fuel cells (IT-FCs) operating at temperatures of 200–300 °C at large scale. However, sintering causes a severe drop of proton conductivity due to the decomposition of SnP₂O₇ and release of residual fused phosphoric acid and/or phosphorous oxides. Here we demonstrate a route to restore the proton conductivity by introducing phosphoric acid inside a sintered SnP₂O₇ membrane to react with the degraded SnP₂O₇ for restoration. After restoration, the decomposition product SnO₂ is converted back to SnP₂O₇ and fused phosphoric acid and/or phosphorous oxides (17.7–20.0%) is regenerated. The proton conductivity is tremendously enhanced from 9.7 × 10⁻⁴ S cm⁻¹ to 0.061 S cm⁻¹ at 225 °C. A planar IT-FC (active area = 5 cm²) with a restored membrane (thickness = 0.85 mm, diameter = 40 mm) generates a peak power density of 78 mW cm⁻² without using intermediate catalyst layers at 225 °C. It can steadily run for 45 h at 100 mA cm⁻² with a degradation rate of 0.7 mV h⁻¹ at 225 °C. The fuel and oxidant are, respectively, H₂ (50 sccm) and air (100 sccm) humidified at 30 °C.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fuel cells are highly efficient, environmentally friendly power sources, which generate electricity by combining fuels (*e.g.*, H_2) and oxidants (*e.g.*, O_2) through electrochemical reactions. Intermediate temperature fuel cells (IT-FCs), operating at temperatures of 200–300 °C, have attracted great interests from fuel cell community because they offer advantages of high impurity tolerance, high

fuel flexibility, facile reaction kinetics, low-cost construction materials, etc. [1–3]. Currently, pyrophosphates of tetravalent elements (MP₂O₇ with M = Sn, Zr, Ti, and Ce) show the most promise as the proton conductive electrolytes for IT-FCs [2,3]. Among them, tin pyrophosphate (SnP₂O₇) and its doped materials have been most studied [4–10]. One major hindrance in applying them in planar IT-FCs at large scale is the challenge in developing mechanically strong, highly proton conductive, and dense membranes [2,3,11].

To date, SnP₂O₇ based electrolytes were mostly tested in a single button cell with a small active area of 1 cm² or less [5–7,9,10,12,13]. A large pressure (1–2 × 10³ kgf cm⁻²) was applied to press the pyrophosphate powders into a membrane [5–7,9,10,12,13]. To fabricate larger membranes, a very large press is required and that

^{*} Corresponding author. Department of Engineering Technology, The University of Houston, Houston, TX 77204, USA.

^{**} Corresponding author. Department of Engineering Technology, The University of Houston, Houston, TX 77204, USA.

E-mail addresses: wli23@central.uh.edu (W. Li), abbose@uh.edu (A.B. Bose).

is impractical. Besides, the mechanical strength of such membranes is still low and not suitable for the testing under stress in a large planar cell. Therefore, the membranes should be fabricated by casting methods and a sintering process is needed to enhance the mechanical strength to realize the applications of IT-FCs at large scale. Unfortunately, it has been well recognized that the sintered pyrophosphate membranes suffer a severe drop of proton conductivity due to the decomposition of the pyrophosphates and the release of fused phosphoric acid and/or phosphorous oxides [2–4,11].

This study aims to restore the proton conductivity of the sintered SnP_2O_7 membranes. We hypothesize that the reaction of phosphoric acid (H₃PO₄) with the degraded SnP_2O_7 after sintering can regenerate SnP_2O_7 from the decomposed SnP_2O_7 and compensate the loss of phosphorous oxides and/or fused H₃PO₄, leading to the reinstatement of proton conductivity. To approach it, we use corn starch as a pore former and binder to prepare a porous sintered SnP_2O_7 membrane. Through the pores, H₃PO₄ can be introduced inside the membrane and reacts with the degraded SnP_2O_7 to regain the composition, structure and thus the proton conductivity. The regenerated membrane will be finally tested in a planar cell to check if it can withstand the stress and exhibit restored performances.

2. Experimental

 SnP_2O_7 was prepared by the reaction of H_3PO_4 and tin dioxide (SnO₂) [4,5]. The mixture of SnO₂ (99.9%, Afla Aesar), H_3PO_4 (85.6%, ACS reagent, J.T. Baker), and deionized water at a molar ratio of 1:2.2:6 was stirred in sequence at ca. 110 °C overnight (covered by aluminum foil), at 220 °C for 1 h, and at 250 °C until hard to stir. The

paste was calcined at 650 °C for 2.5 h to finally obtain SnP₂O₇.

The as-synthesized SnP₂O₇ was dry ball-milled (agate balls and jar, SPEX 8000M Mixer/Mill) for 20 min. The obtained powders were then mixed with corn starch (Argo[®], ACH food companies) and deionized water at a mass ratio of 10:0.5:2.85. The mixture was wet ball-milled (HDPE bottle, agate balls, SPEX 8000M Mixer/Mill) for 10 min. The gained slurry was then casted in a mold $(\Phi = 25 \text{ mm})$ at room temperature to get a membrane, which was further heated in a tube furnace at a ramp rate of 5 °C min⁻¹ to 1050 °C for 10 h for sintering to get a porous sintered SnP₂O₇ membrane. The pores in the membrane were produced by burning off the starch during sintering [14,15]. We confirmed the starch burn-off during sintering by comparing the mass changes of two SnP_2O_7 pellet samples ($\Phi = 25 \text{ mm}$) with and without starch before and after sintering. The details are presented in Supplementary Information. Non-porous sintered SnP₂O₇ membranes were also prepared without using starch. To restore the proton conductivity, the porous sintered membrane was immersed into H₃PO₄ (85.6%), heated at ca. 110 °C overnight and subsequently at ca. 180 °C for 3 h. It was then heated in a tube furnace at 500 °C for 2 h. The process and membrane are denoted as restoration process and restored SnP₂O₇ membrane, respectively. To estimate the sum content of the fused phosphoric acid and phosphorous oxides in the restored SnP₂O₇ membranes, we designed a simple route, for the first time, based on the assumption that all of the fused phosphoric acid and phosphorous oxides can combine with water back to form H₃PO₄. The amount of H₃PO₄ determined by measuring the pH of the suspension of restored SnP₂O₇ powders in water is then used to estimate the sum content of the fused phosphoric acid and phosphorous oxides. The details are presented in Supplementary Information.

Fig. 1. XRD patterns of (a) as-synthesized SnP₂O₇ powders, (b) SnO₂ powders, (c) a sintered SnP₂O₇ membrane, and (d) a restored SnP₂O₇ membrane. The two arrows in (c) indicate the reflections of SnO₂.

Download English Version:

https://daneshyari.com/en/article/7728881

Download Persian Version:

https://daneshyari.com/article/7728881

Daneshyari.com