ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method

Md Ashigur Rahman ^a, Sohel Anwar ^{a, *}, Afshin Izadian ^b

- ^a Department of Mechanical Engineering, Purdue School of Engineering and Technology, IUPUI, Indianapolis, IN 46202, USA
- b Energy Systems and Power Electronics Lab, Purdue School of Engineering and Technology, IUPUI, Indianapolis, IN 46202, USA

HIGHLIGHTS

- Four critical electrochemical model parameters of a Li-Ion battery were identified.
- A cost function was defined to minimize voltage error between model and test data.
- Particle swarm optimization methodology was utilized to minimize the cost function.
- Four sets of these critical model parameters were identified for the stated conditions.

ARTICLE INFO

Article history: Received 20 July 2015 Received in revised form 13 December 2015 Accepted 17 December 2015 Available online xxx

Keywords: Electrochemical model Lithium-ion batteries Particle swarm optimization Parameter identification Battery management system

ABSTRACT

In this paper, a gradient-free optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized to identify specific parameters of the electrochemical model of a Lithium-Ion battery with LiCoO₂ cathode chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, over-discharged battery, over-charged battery, etc. It is important for a battery management system to have these parameter changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. Here the PSO methodology has been successfully applied to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions: solid phase diffusion coefficient at the positive electrode (cathode), solid phase diffusion coefficient at the negative electrode (anode), intercalation/de-intercalation reaction rate at the cathode, and intercalation/de-intercalation reaction rate at the anode. The identified model parameters were used to generate the respective battery models for both healthy and degraded batteries. These models were then validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. The identified Li-Ion battery electrochemical model parameters are within reasonable accuracy as evidenced by the experimental validation results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Amongst all the alternative energy sources available for various propulsion applications such as plug-in hybrid electric vehicle (PHEV), hybrid electric vehicle (HEV), and electric vehicle (EV), Lithium-Ion (Li-ion) battery is considered to be the most promising [1]. Compared to the other alternative options for energy sources (such as Nickel—Cadmium, Nickel-Metal Hydride, etc.), Lithium-Ion

E-mail addresses: rahman2@iupui.edu (M.A. Rahman), soanwar@iupui.edu (S. Anwar), aizadian@iupui.edu (A. Izadian).

batteries have some unique advantages such as higher specific energy, minimum memory effect, best energy-to-weight ratio, and low self-discharge when idle [2,3]. Based on these stated advantages, Li-Ion batteries are the leading candidate for the upcoming generation of automotive, aerospace, and other applications.

PHEV, HEV, and EV have been gaining more acceptance in recent years due to their lower emission rates and better fuel efficiency [4]. Performance of these transportation options are significantly dependent on the electrochemical energy sources, e.g. installed battery modules integrated with the vehicle powertrain. Depending on the user driving habits and the road conditions, these traction batteries undergo different operating conditions as the battery load demand changes. The safe operation of the entire battery

^{*} Corresponding author.

Nomes $c_e \\ c_s$ $\overline{c}_{s,i} \\ D_e$	lithium ion concentration in the electrolyte phase lithium ion concentration in the active materials in both electrodes volume-averaged concentration of a single particle diffusivity at electrolyte phase	n R R _p t _c ⁰ T U V	number of active materials universal gas constant radius of the spherical particles transference number average internal temperature open circuit potential cell voltage
$egin{array}{l} D_s & f_{Q_a} & F^a & & & & & & & & & & & & & & & & & & &$	diffusivity at solid phase mean molar activity coefficient Faraday constant current in the electrolyte phase exchange current density load current molar ion fluxes between the active materials in electrodes and the electrolyte length of negative electrode length of positive electrode	$egin{array}{l} lpha_a & & & & & & & & & & & & & & & & & & $	charge transfer coefficient in anode charge transfer coefficient in cathode observer gain constant potential at electrolyte phase potential at solid phase volume fraction at electrolyte phase volume fraction at solid phase over-potential for the reactions average density intercalation/de-intercalation reaction rate

module is always expected, as it is one of the most vital components of the stated vehicle configurations. But in reality, it is not always possible to maintain the desired safe and healthy operating conditions of the battery system for a number of reasons. For instance, battery can be overcharged during operation, or over-discharged at different rates. Moreover, battery degradation due to aging is another potential situation arising out of long-term cycling of the battery.

In HEVs, the onboard battery management system (BMS) is responsible for managing the rechargeable battery system by monitoring its state of charge (SOC), protecting the battery from unsafe operating zones, and reporting the diagnostic data to the operator while managing the battery operation. An accurate monitoring of the battery state is possible if the critical battery parameters can be reliably identified which can consequently lead to a better BMS. With this objective, identification of four critical

battery parameters of an electrochemical battery model with LiCoO₂ cathode chemistry is developed in this work. It is to be noted that a LiCoO₂ cathode based Li-Ion battery offers high energy density compared to other Li-Ion battery chemistries such as LiFePO₄ cathode. Also, the electrochemical model of a Li-Ion battery captures a more realistic chemical kinetics and electro-dynamics in a cell compared to other modeling methodologies such as equivalent circuit model. Amongst all the parameters of the electrochemical model of Li-Ion battery, the principal reason for selecting these four parameters (e.g. solid phase diffusion coefficient at the cathode, solid phase diffusion coefficient at the anode, intercalation/de-intercalation reaction rate at the cathode, and intercalation/de-intercalation reaction rate at the anode) is that these parameters exhibit significant variations when the battery is subject to severe or abusive conditions such as overcharging, overdischarging, adverse environmental conditions, etc. [13].

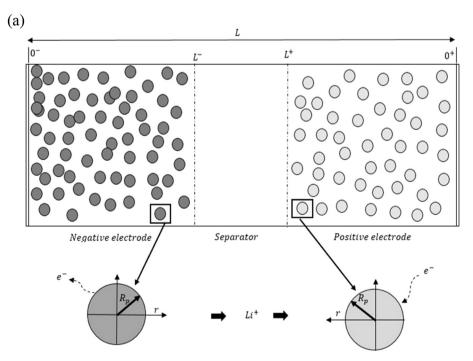


Fig. 1. (a) Schematic of Li-lon battery geometry; (b) PSO algorithm flowchart.

Download English Version:

https://daneshyari.com/en/article/7729507

Download Persian Version:

https://daneshyari.com/article/7729507

<u>Daneshyari.com</u>