[Journal of Power Sources 296 \(2015\) 86](http://dx.doi.org/10.1016/j.jpowsour.2015.07.029)-[91](http://dx.doi.org/10.1016/j.jpowsour.2015.07.029)

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors

Fei Li ^a, Gang Li ^{b, **}, Hao Chen ^a, Jia Qi Jia ^a, Fan Dong ^c, Yao Bo Hu ^a, Zheng Guo Shang ^d, Yu Xin Zhang $a, d, *$

^a College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China

^b State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China

^c Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, PR China

^d National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, PR China

HIGHLIGHTS

- Manganese cobalt oxide@manganese dioxides hierarchical nanostructures.
- Morphology and crystallinitycontrolled synthesis.
- High specific capacitance of $MnCo₂O_{4.5}@ δ -MnO₂: 357.5 F g⁻¹ at$ current density of 0.5 A g^{-1} .
- Good cycle stability: 97% capacitance retention after 1000 cycles at a scan rate of 5 A g^{-1} .

Article history: Received 11 April 2015 Received in revised form 17 June 2015 Accepted 9 July 2015 Available online xxx

Keywords: $MnO₂$ Manganese cobalt oxide Chemical synthesis Core-shell nanostructures Supercapacitor

highlights graphical abstract

ABSTRACT

We demonstrate a novel preparative strategy for the well-controlled $MnCo₂O_{4.5}@MnO₂$ hierarchical nanostructures. Both δ -MnO₂ nanosheets and α -MnO₂ nanorods can uniformly decorate the surface of $MnCo₂O_{4.5}$ nanowires to form core-shell heterostructures. Detailed electrochemical characterization reveals that MnCo₂O_{4.5}@ δ -MnO₂ pattern exhibits not only high specific capacitance of 357.5 F g⁻¹ at a scan rate of 0.5 A g^{-1} , but also good cycle stability (97% capacitance retention after 1000 cycles at a scan rate of 5 A g^{-1}), which make it have a promising application as a supercapacitor electrode material. © 2015 Elsevier B.V. All rights reserved.

* Corresponding author. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.

** Corresponding author.

1. Introduction

Manganese dioxides ($MnO₂$) have been studied widely because of their excellent properties and various potential applications such as molecular sieves, catalysts, and especially energy storage $[1-3]$ $[1-3]$.

E-mail addresses: 47922138@163.com (G. Li), zhangyuxin@cqu.edu.cn (Y.X. Zhang).

Up to now, MnO₂ with diverse structures and morphologies (such as nanosheets $[4]$, hollow nanospheres $[5]$, nanoflowers $[6]$, nanowires/nanorods [\[7,8\],](#page--1-0) thin films [\[9\],](#page--1-0) and nanotubes [\[10\]\)](#page--1-0) and different crystalline phases (such as α [\[11\],](#page--1-0) β [\[12\]](#page--1-0), γ [\[13\],](#page--1-0) and δ [\[14\]\)](#page--1-0) have been fabricated via electrochemical and chemical routes, and their electrochemical properties have been investigated. These studies indicate that the outstanding nanostructures and crystalline phases of the $MnO₂$ materials have been regarded as critical factors to influence their properties. Thus the precise design of MnO2 nanostructures with various crystallographic structures has great significance for supercapacitors. However, most of MnO₂based materials exhibit poor electrical conductivity, volume expansion and severe aggregation during the redox reactions, which could lead to the inadequate utilization and pulverization of the active materials. To overcome these disadvantages, some conducting materials are used as supporting materials to form nano-composites with MnO₂, such as Cu₂O@MnO₂ [\[15\],](#page--1-0) Co₃O₄@MnO₂ [\[16\]](#page--1-0), ZnO@MnO₂ [\[17\],](#page--1-0) Fe₂O₃@MnO₂ [\[18\]](#page--1-0) and CuO@MnO₂ [\[19\].](#page--1-0) However, the synthetic procedures for these unique MnO₂-based core-shell structures are still relatively complicated since they either need carbon coating or electrochemical deposition process. What's more, these nanostructures may become electrically isolated due to the weak forces and the loose contacts between them. Thus, a novel but simple design and fabrication of $MnO₂$ -based composites with highly-accessible surface areas and fast ion diffusion for supercapacitors still remains a challenge.

An effective approach is the design of heterostructure with the combination of one dimensional nanowire and different crystalline phases of MnO₂. Especially, continuous networks forming by one dimensional core-shell nanowires are being given serious consideration, as they could not only prevent the aggregation and volume change of active materials during the electrochemical reactions, but also provide fully effective electrical contact between the one dimensional nanostructures of the continuous $MnO₂$ network [\[20,21\]](#page--1-0).

Herein, we demonstrate a facile and cost-effective approach to design and fabricate hierarchical $MnCo₂O_{4.5}@MnO₂ core–shell$ nanowires for high-performance supercapacitors, in which the mesoporous $MnCo₂O_{4.5}$ nanowires served as the "core" and the δ -MnO₂ nanosheets (and/or α -MnO₂ nanorods) as the shell" layer. The coupling of two metal species (Mn and Co) could render the MnCo2O4.5@MnO2 with rich redox reactions which are beneficial to electrochemical applications. Besides, the various combinations of the cations and the tunable stoichiometric/non-stoichiometric compositions of the $MnCo₂O_{4.5}@MnO₂$ provide vast opportunities to manipulate the physical/chemical properties. The schematic two-step formation process of the hierarchical $MnCo₂O₄$, $@MnO₂$ $core$ -shell nanowires is illustrated in Fig. 1. The proposed process is based on hydrothermal reaction where in the initial step KMnO₄ is used to obtain the nanostructured layer of δ -MnO₂ nanosheets on the surface of $MnCo₂O_{4.5}$ nanowires. Afterwards, δ -MnO₂ nanosheets are converted to α -MnO₂ nanorods. The electrochemical and supercapacitor properties of as-prepared $MnCo₂O₄5@MnO₂$ are studied, and they exhibit ideal initial capacitive behavior and good cycling stability in a neutral electrolyte system.

2. Experimental section

2.1. Synthesis of MnCo₂O_{4.5} nanowires

All the reagents were of analytical-reagent grade, and used without further purification. In a typical synthesis, 8 mmol of cobalt (II) sulfate heptahydrate ($CoSO_4·7H_2O$) and 4 mmol of manganese (II) sulfate hydrate ($MnSO_4 \cdot H_2O$) were dissolved in 160 mL of a mixed solution of ethylene glycol and H_2O (v: $v = 3:1$) at room temperature with magnetic stirring to form a clear pink solution I. And 12 mmol oxalic acid were dissolved in 160 mL of a mixed solution of ethylene glycol and $H_2O(v:v = 3:1)$ to form the solution II. Afterwards, solution II were dropwisely added into solution I and stirred for one hour. The mixture was transferred to a Teflon-lined stainless steel autoclave, and put in an electric oven at 130 °C for 24 h. Subsequently, the sample was washed with distilled water and ethanol, and dried at 60° C overnight. Finally, the precursors were converted to MnCo₂O_{4.5} after calcination in air at 600 °C for 2 h.

2.2. Synthesis of MnCo₂O_{4.5}@ δ -MnO₂ and MnCo₂O_{4.5}@ α -MnO₂

In a typically synthesis, $MnCo₂O_{4.5}$ (30 mg) were dispersed in KMnO4 solution (0.01 M; 30 mL) by ultrasonic vibration for 10 min. Afterwards, the mixed solution was transferred to a 50 mL Teflonlined stainless steel autoclave. The autoclave was sealed and put in an electric oven at 160 \degree C for 24 h and then cooled to room temperature naturally. The black resultants were washed with distilled water and dried at 60 \degree C for 12 h in a vacuum oven. These products were labeled as $MnCo₂O_{4.5}@ δ -MnO₂.$

For the preparation of $MnCo₂O_{4.5}@\alpha-MnO₂$, the corresponding MnCo₂O_{4.5}@ δ -MnO₂ samples were calcined at 500 °C in air for 4 h.

2.3. Materials characterization

The crystallographic information and chemical composition of as-prepared products were established by powder X-ray diffraction (XRD, D/max 2500, Cu Ka). The morphological investigations of the MnCo₂O_{4.5} nanowires and MnCo₂O_{4.5}@MnO₂ were carried out with focused ion beam (Zeiss Auriga FIB/SEM) and transmission electron microscopy (TEM, ZEISS LIBRA 200). Nitrogen adsorption-desorption isotherms were measured at 77 K with micrometritics ASAP 2020 sorptometer. The specific surface area was calculated with the Brunauer-Emmett-Teller (BET) equation, and the pore size distributions were calculated from the adsorption curve by the Barrett-Joyner-Halenda (BJH) method.

2.4. Electrochemical measurement

The electrochemical properties of the electrodes were carried out using an electrochemical workstation (CHI 660E) with threeelectrode configuration in a 1 M $Na₂SO₄$ aqueous solution. The working electrode consisted of nickel foam as a current collector and a mixture of active materials, acetylene black and poly-

Download English Version:

<https://daneshyari.com/en/article/7730758>

Download Persian Version:

<https://daneshyari.com/article/7730758>

[Daneshyari.com](https://daneshyari.com)