Journal of Power Sources 293 (2015) 33-41

Contents lists available at ScienceDirect

Journal of Power Sources

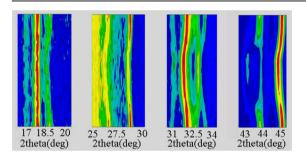
journal homepage: www.elsevier.com/locate/jpowsour

Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum

Pengfei Wang ^{a, b}, Peng Li ^a, Ting-Feng Yi ^{b, *}, Xiaoting Lin ^a, Yan-Rong Zhu ^b, Lianyi Shao ^a, Miao Shui ^a, Nengbing Long ^a, Jie Shu ^{a, *}

^a Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, People's Republic of China ^b School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, Anhui Province, People's Republic of China

HIGHLIGHTS


- Ti-site substitution in $Li_2Na_2Ti_6O_{14}$ anode is reported at the first time.
- $Li_2Na_2Ti_{5.9}M_{0.1}O_{14}$ (M = Al, Zr, V) are prepared by a solid-state reaction.
- Li₂Na₂Ti_{5.9}Al_{0.1}O₁₄ exhibits enhanced electrochemical property.
- \bullet Li_2Na_2Ti_{5.9}Al_{0.1}O_{14} delivers a charge capacity of 180.7 mAh g^{-1} at 1000 mA $g^{-1}.$

A R T I C L E I N F O

Article history: Received 25 March 2015 Received in revised form 14 May 2015 Accepted 18 May 2015 Available online

Keywords: Lithium-ion batteries Anode material Lithium sodium titanate Metal doping Electrochemical property

G R A P H I C A L A B S T R A C T

ABSTRACT

Li₂Na₂Ti₆O₁₄ and its Ti-site substitution Li₂Na₂Ti_{5.9}M_{0.1}O₁₄ (M = Al, Zr, V) are prepared by a solid-state reaction method and used as anode materials for lithium-ion batteries. It is found that metal doping can effectively enhance the electronic conductivity and ionic diffusion coefficient of Li₂Na₂Ti₆O₁₄. Especially for Li₂Na₂Ti_{5.9}Al_{0.1}O₁₄, it reveals the highest electronic conductivity (1.02×10^{-9} S cm⁻¹) and lithium ion diffusion coefficient (8.38×10^{-15} cm² s⁻¹) among all the samples. As a result, Li₂Na₂Ti_{5.9}Al_{0.1}O₁₄ reveals the best electrochemical performance. It can deliver a charge specific capacity of 270.3 mAh g⁻¹ at 50 mA g⁻¹. Even cycled at 1000 mA g⁻¹, it still can present a charge capacity of 180.7 mAh g⁻¹. All these enhanced lithium storage capabilities of Li₂Na₂Ti_{5.9}Al_{0.1}O₁₄ should be attributed to the increased electronic/ionic conductivities and the decreased charge transfer resistance induced by Al doping. Besides, in-situ X-ray diffraction observation also confirms that the structural change of Li₂Na₂Ti_{5.9}Al_{0.1}O₁₄ is highly reversible process for lithium storage.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, lithium ion batteries have been widely applied as the main power sources for portable electronic products

* Corresponding authors.

(e.g. cellular phones, laptops, digital cameras), electric vehicles and large-scale grid energy storage because of their high energy density, long cycle life and environmental friendliness [1]. However, lithium ion batteries always suffer from poor safety issue, and have the risk of explosion due to the use of unsafe electrode materials [2–4]. Consequently, it is necessary to find high structural/thermal stability electrode materials for solving the safety issue of lithium-ion batteries.

E-mail addresses: tfyihit@163.com (T.-F. Yi), sergio_shu@hotmail.com, shujie@ nbu.edu.cn (J. Shu).

In recent years, spinel lithium titanate (Li₄Ti₅O₁₂) has been extensively studied to replace graphite for its high discharge/charge plateau (about 1.55 V versus Li/Li⁺), high thermodynamic stability and zero strain characteristic [5]. In comparison to Li₄Ti₅O₁₂, Li₂MTi₆O₁₄ (M = Sr or Ba) with lower working potential (about 1.4 V) is a novel anode material for lithium ion batteries [6,7]. For instance, Li₂BaTi₆O₁₄ formed by a solid state reaction can deliver a reversible capacity of 137.7 mAh g⁻¹ with an average working potential of 1.45 V [8]. Li₂SrTi₆O₁₄ prepared by using mesoporous brookite TiO₂ shows good cycling stability and rate capability in LiMn₂O₄/Li₂SrTi₆O₁₄ full cell [9]. Thus, it is concluded that this class of materials (Li₂MTi₆O₁₄, M = Ba or Sr) could be of practical use in high-power lithium-ion batteries for transportation applications [6–11].

As reported, the structure of $Li_2MTi_6O_{14}$ (M = Sr or Ba) can be described as a network of intercalated edge and corner-sharing octahedral [12–14]. Li₂Na₂Ti₆O₁₄, an isostructural titanate with a composition corresponding to the formula Li₂MTi₆O₁₄, has also been evidenced in the ternary oxide systems MO-Li₂O-TiO₂ (M = Sr, Ba, Pb, 2Na) [14]. Most recently, $Li_2Na_2Ti_6O_{14}$ has been investigated as a probable anode material for lithium-ion batteries [15–19]. Although it reveals a low working potential platform at 1.25 V, the electrochemical properties of Li₂Na₂Ti₆O₁₄ is poor due to its unsatisfied intrinsic electronic/ionic conductivities. To enhance the lithium storage capability, carbon coating is developed to form a nano-micro structure for Li₂Na₂Ti₆O₁₄ [20,21]. To our knowledge, doping has been considered to be an effective way to improve the intrinsic electronic/ionic conductivities of electrode materials for lithium-ion batteries. The cations and anions including Ag⁺ [22], Mg^{2+} [23], Ni^{2+} [24], Cu^{2+} [25], Ca^{2+} [26], La^{3+} [27], Gd^{3+} [28], Nb^{5+} [29], F^{-} [30], Br^{-} [31] and N^{3-} [32] have been widely investigated as the doped ions in titanates by researchers all over the world.

In the present work, $Li_2Na_2Ti_6O_{14}$ and its Ti-site substitution products are prepared by a high temperature solid state reaction method. The structure and morphology of as-prepared Li_2Na_2 . $Ti_{5.9}M_{0.1}O_{14}$ (M = Al, Zr and V) are investigated and compared with each other. Electrochemical results show that the dopings of Al³⁺ and Zr⁴⁺ can effectively enhance the electronic/ionic conductivities and reduce the charge transfer resistance of $Li_2Na_2Ti_6O_{14}$, which contribute greatly to the improvement of reversible specific capacity, cycling calendar life and rate performance of $Li_2Na_2Ti_6O_{14}$.

2. Experimental

In this investigation, pure $Li_2Na_2Ti_6O_{14}$ was synthesized via a high temperature solid-state reaction route. The starting materials of CH₃COOLi \cdot 2H₂O (Aladdin Chemistry), CH₃COONa \cdot 3H₂O (Aladdin

Chemistry), TiO₂ (Aladdin Chemistry) and oxalic acid (H₂C₂O₄, Aladdin Chemistry) with molar ratio of 1:1:3:1 were pretreated by planetary high energy ball milling in ethanol for 12 h, then dried in a vacuum oven at 80 °C for 6 h. The as-obtained powder was ground and placed in an alumina boat. After that, it was initially calcined at 400 °C for 4 h, and then calcined at 800 °C for 10 h in an air atmosphere to obtain the final product. In the preparation of precursor for Li₂Na₂Ti_{5.9}M_{0.1}O₁₄, 1.67% molar ratio of TiO₂ was replaced by Al(NO₃)₃·9H₂O (Aladdin Chemistry), Zr(NO₃)₄·5H₂O (Aladdin Chemistry) or NH₄VO₃ (Aladdin Chemistry) before ball milling. The calcinations process of Li₂Na₂Ti_{5.9}M_{0.1}O₁₄ (M = Al, Zr, V) is the same as the pure sample.

Phase analysis of the as-prepared samples was performed on a Bruker AXS D8 Focus X-ray diffraction (XRD) instrument with Cu K α radiation ($\lambda = 0.15406$ nm). Samples were observed with a scan angle between 10 and 80°. In-situ XRD patterns were conducted on the same instrument based on the homemade technique [33]. Particle morphologies of samples were examined by Hitachi S3400 scanning electron microscopy (SEM). The electronic conductivities of the samples were analyzed by using the four-electrode method on a Bio-Logic VSP EC-Lab electrochemical workstation. For electronic conductivity investigation, all the powder samples were pelleted to slices with 15 mm in diameter and 3 mm in thickness.

To evaluate electrochemical performance, the Li₂Na₂Ti_{5.9}M_{0.1}O₁₄ electrodes were composed of 80 wt.% as-prepared powder as active material. 10 wt.% acetylene black as the conductive agent, and 10.wt % poly(vinylidene difluoride) as the binder. The powder was mixed in 1-methyl-2-pyrrolidinone solvent and then pressed onto a Cu foil substrate. The film coated Cu foil was dried at 120 °C in a vacuum oven for 12 h, and then cut into slices with a diameter of 15 mm. Galvanostatic charge-discharge measurements were carried out using CR2032 coin-type cells. In a typical cell, lithium metal was used as the counter electrode, the separator was Whatman glass fiber, and 1 mol L^{-1} solution of LiPF₆ dissolved in ethylene carbonate/dimethyl carbonate (1:1 in volume) was used as electrolyte. Charge-discharge properties of sample cells were measured with different current densities of 50–1000 mA g^{-1} on multi-channel Land CT2001A battery test system (Wuhan Jinnuo, China). Cyclic voltammetry (CV) study was examined by using a three-electrode system on a CHI 1000B electrochemical analyzer (Shanghai Chenhua, China) over a potential range of 0.0-3.0 V at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectra (EIS) were collected by using a three-electrode system on a CHI 660D electrochemical workstation (Shanghai Chenhua, China) with an amplitude of 5 mV in a frequency range between 0.01 and 100,000 Hz. In a typical three-electrode system, lithium metal slices were used as the counter and reference electrodes.

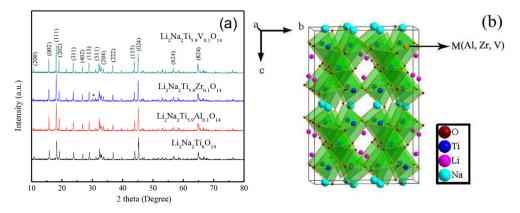


Fig. 1. XRD patterns (a) and crystal structure (b) of $Li_2Na_2Ti_6O_{14}$ and $Li_2Na_2Ti_{5.9}M_{0.1}O_{14}$ (M = Al, Zr, V).

Download English Version:

https://daneshyari.com/en/article/7731371

Download Persian Version:

https://daneshyari.com/article/7731371

Daneshyari.com