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HIGHLIGHTS

e We propose a sparse Bayesian learning method for battery capacity estimation.

e The method is applicable to Li-ion batteries used in implantable medical device.

o Five features indicative of battery capacity are extracted from charge curves.

e RVM regression approximates mapping from feature space to capacity state space.
o Cycling data from lab and field cells are used to verify the performance.
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Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for
implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as
of high importance from a broad range of stakeholders, including medical device manufacturers, regu-
latory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to
develop health monitoring techniques that accurately estimate the capacity of the battery throughout its
life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and
current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device.
Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the
complex dependency of the battery capacity on the characteristic features that are extracted from the
charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method
generates a reduced-scale regression model that consumes only a small fraction of the CPU time required
by a full-scale model, which makes online capacity estimation computationally efficient. 10 years'
continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to

verify the performance of the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Capacity, as an important indicator of the state of health (SOH)
of Li-ion battery [1,2], measures the maximum amount of electric
charge that a fully charged battery can deliver. Online estimation of
battery capacity raises awareness of the present battery health
condition and enables early detection of an incipient fault and
timely implementation of maintenance actions. Recent literature
reports a variety of approaches to estimating the capacity of Li-ion
battery. In general, these approaches can be categorized into the
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adaptive filtering approach [1—6], the coulomb counting approach
[7—9], the neural network (NN) approach [10—12] and the kernel
regression approach [13—17].

Joint/dual extended Kalman filter (EKF) [1] and unscented Kal-
man filter [2,3] were employed to estimate the state of charge
(SOC), capacity and/or resistance of Li-ion battery. To improve the
performance of joint/dual estimation, adaptive measurement noise
models of Kalman filter were developed to separate the sequence of
SOC and capacity estimation [4]. A multiscale scheme with EKF [5]
was developed that decouples the SOC and capacity estimation
with respect to both the measurement- and time-scales and em-
ploys a state projection schedule for accurate and stable capacity
estimation. Most recently, a data-driven multi-scale EKF algorithm
was developed that leverages the fast-varying characteristic of SOC
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and the slowly-varying characteristic of capacity, with an aim to
achieve accurate SOC and capacity estimation in real-time [6].

The coulomb counting approach estimates the capacity by a
simple integration of current over time. An enhanced coulomb
counting approach was developed to estimate the capacity of a Li-
ion cell with dynamic re-calibration after the cell is fully charged or
discharged [7]. The coulomb counting approach offers a simple way
to compute the capacity. But it requires accurate current mea-
surement and, often, a full charge/discharge cycle to be exercised.
This approach is typically used, in a well-controlled experiment, to
provide a benchmark for evaluating a more sophisticated capacity
estimation approach. Two recently developed approaches
employed the coulomb counting approach to estimate the battery
capacity based on the difference in the SOC values before and after
partial charge/discharge [8,9].

The NN approach builds a network structure of interconnected
“neurons” to model the dependency between the input features
(e.g., cell terminal voltage, current and temperature) and the output
(i.e., cell capacity). The recurrent NN were employed to estimate the
two SOH-related parameters, namely the capacity and equivalent
series resistance, of a high-power-density Li-ion cell based on the
temperature, current, SOC variations and historical cell behavior
[10] and achieved good accuracy in SOH estimation over hundreds
of accelerated ageing cycles. The Hamming NN was applied to
identifying the representative capacity pattern (from a set of
training cells with known capacities) that most closely matches
that of a testing cell whose capacity is unknown and to be esti-
mated [11]. A very recent study developed a data-driven approach
that integrates NN with dual EKF for online estimation of Li-ion
battery [12]. In this approach, an NN model was built as a battery
dynamic model that utilizes the SOC, current and capacity to esti-
mate the terminal voltage, and dual EKF was used to jointly esti-
mate both the SOC and capacity.

The kernel regression approach models the non-linear rela-
tionship between the measureable features and the cell capacity by
way of kernel functions. Kernel regression techniques that were
employed to estimate the capacity of Li-ion battery include support
vector machine (SVM) [13,14], relevance vector machine (RVM)
[15,16] and k-nearest neighbor (kNN) regression [17], all of which
are machine learning techniques. SVM was used to predict the SOC,
capacity fade and power loss of Li-ion battery based on the baseline
data collected from reference performance tests [13]. In a more
recent study, SVM was used in combination with load cycle
counting to estimate the capacity of high-power Li-ion battery used
in hybrid electric vehicles [14]. The performance of the developed
capacity estimation approach was verified by performing a six-
month cycling test with real-world driving profiles. RVM is a
sparse Bayesian approach to kernel regression and performs
regression in a probabilistic manner. The extreme sparsity of the
RVM regression model allows one to make estimations for new
observations in a highly efficient manner. An intelligent RVM-based
method was proposed to estimate the SOH of Li-ion battery based
on the sample entropy feature extracted from the discharge voltage
measurements [15]. A Bayesian framework combining RVM and
particle filter was proposed for tracking the capacity fade and
predicting the remaining useful life of Li-ion battery [16]. Unlike
SVM and RVM, kNN regression is a non-parametric learning tech-
nique. The technique possesses the unique property that no explicit
training step is required. Recently, KNN regression was employed to
capture the complex dependency of the capacity on the charge-
related features, and particle swarm optimization was adapted to
finding the optimal combination of feature weights for creating a
kNN regression model with the minimum estimation error [17].

As mentioned above, researchers have developed a wide range
of methods to estimate the capacity of Li-ion battery. However,

further research is still needed to develop efficient, accurate and
robust methods that track the capacity fade of Li-ion battery based
on readily available measurements (i.e., voltage, current and tem-
perature). This paper aims to apply a statistical learning method,
RVM, to the task of estimating the capacity of Li-ion battery based
on the voltage and current measurements during charge. This
application involves two main steps, which are presented in Section
2 and summarized as follows:

1. First, five characteristic features that are indicative of the ca-
pacity are extracted from the charge curves. These features can
be easily computed based on the voltage and current mea-
surements during a charge cycle, where a battery is fully
charged from a partially discharged state. See Section 2.1 for
details.

2. Then, RVM is used to learn the relationship between the ca-
pacity of a battery and its charge-related features. A RVM
regression model, after being trained offline, is used to infer the
unknown capacity of a battery online from a set of charge-
related features. Two desirable properties that RVM possesses
are (i) the generalization, i.e., the over-fitting is avoided during
offline training, and (ii) the sparsity, i.e., only a sparse set of
training points, namely relevance vectors, are used for online
inference. The generalization property ensures good accuracy in
online inference, while the sparsity property improves compu-
tational efficiency. To the best of our knowledge, the present
study is the first to investigate the use of the sparse Bayesian
learning method to infer the battery capacity from the charge
data. See Section 2.2 for details.

The experimental verification of this application was accom-
plished by analyzing data from (i) a 10 years' continuous cycling
test on eight Li-ion cells that were manufactured in 2002 and (ii) a
post-explant cycling test on twenty-three Li-ion cells with 4—7
implant years. Section 3 presents and discusses the verification
results. The paper is concluded in Section 4.

2. Technical approach

The aim of the method described in this section is to estimate
the capacity of a Li-ion battery cell based on the basic measure-
ments (i.e., voltage and current) collected from the cell during
charge. Specifically, we intend to convert the voltage and current
measurements during a charge cycle to a feature vector, X, and use a
trained RVM expert to infer the cell capacity based on the feature
vector. Section 2.1 briefly describes the composition of the feature
vector. Section 2.2 discusses the use of RVM to build a sparse kernel
regression model that approximates the non-linear mapping from
the multi-dimensional feature space to the one-dimensional ca-
pacity state space.

2.1. Feature extraction

Typical voltage and current curves of a Li-ion battery cell during
a charge cycle is shown in Fig. 1 [17]. The cell enters the charge
stage after being partially discharged to a certain SOC level. A
standard charge protocol comprises of two charge steps, the con-
stant current (CC) charge step and the constant voltage (CV) charge
step. In the CC charge step, a charge current is kept at a constant
until the cell terminal voltage rises up to a predefined voltage limit,
Vimax. Immediately after the cell terminal voltage reaches V4, the
charge process transitions from the CC charge step to the CV charge
step. In the CV charge step, the cell terminal voltage is kept un-
changed at Vg until a predefined time limit is reached. Accord-
ingly, the total charge capacity consists of two parts, the CC charge
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